Rights Contact Login For More Details
- Wiley
More About This Title Essential Computational Fluid Dynamics
- English
English
- English
English
OLEG ZIKANOV is an Associate Professor in the Department of Mechanical Engineering at the University of MichiganDearborn.
- English
English
PREFACE xv
1 What Is CFD? 1
1.1. Introduction / 1
1.2. Brief History of CFD / 4
1.3. Outline of the Book / 6
References and Suggested Reading / 7
I Fundamentals 9
2 Governing Equations of Fluid Dynamics and Heat Transfer 11
2.1. Preliminary Concepts / 11
2.2. Mass Conservation / 14
2.3. Conservation of Chemical Species / 15
2.4. Conservation of Momentum / 16
2.5. Conservation of Energy / 19
2.6. Equation of State / 21
2.7. Equations in Integral Form / 21
2.8. Equations in Conservation Form / 24
2.9. Equations in Vector Form / 25
2.10. Boundary Conditions / 26
2.10.1. Rigid Wall Boundary Conditions / 27
2.10.2. Inlet and Exit Boundary Conditions / 29
2.10.3. Other Boundary Conditions / 29
References and Suggested Reading / 30
Problems / 30
3 Partial Differential Equations 32
3.1. Model Equations; Formulation of a PDE Problem / 33
3.1.1. Model Equations / 33
3.1.2. Domain, Boundary, and Initial Conditions / 35
3.1.3. Equilibrium and Marching Problems / 36
3.1.4. Examples / 37
3.2. Mathematical Classification of PDE of Second Order / 40
3.2.1. Classification / 40
3.2.2. Hyperbolic Equations / 42
3.2.3. Parabolic Equations / 45
3.2.4. Elliptic Equations / 46
3.3. Numerical Discretization: Different Kinds of CFD / 46
3.3.1. Spectral Methods / 47
3.3.2. Finite Element Methods / 49
3.3.3. Finite Difference and Finite Volume Methods / 49
References and Suggested Reading / 52
Problems / 52
4 Basics of Finite Difference Approximation 55
4.1. Computational Grid / 55
4.1.1. Time Discretization / 55
4.1.2. Space Discretization / 56
4.2. Finite Differences and Interpolation / 57
4.2.1. Approximation of ∂u/∂x / 57
4.2.2. Truncation Error, Consistency, Order of Approximation / 58
4.2.3. Other Formulas for ∂u/∂x: Evaluation of the Order of Approximation / 60
4.2.4. Schemes of Higher Order for First Derivative / 62
4.2.5. Higher-Order Derivatives / 63
4.2.6. Mixed Derivatives / 64
4.2.7. Truncation Error of Linear Interpolation / 66
4.3. Approximation of Partial Differential Equations / 67
4.3.1. Approach and Examples / 67
4.3.2. Interpretation of Truncation Error: Numerical Dissipation and Dispersion / 70
4.3.3. Boundary and Initial Conditions / 73
4.3.4. Consistency of Numerical Approximation / 74
4.3.5. System of Difference Equations / 75
4.3.6. Implicit and Explicit Methods / 76
4.4. Development of Finite Difference Schemes / 78
4.4.1. Taylor Series Expansions / 79
4.4.2. Polynomial Fitting / 82
References and Suggested Reading / 83
Problems / 83
5 Finite Volume Method 86
5.1. Introduction and Integral Formulation / 86
5.1.1. Finite Volume Grid / 87
5.1.2. Global Conservation Property / 89
5.2. Approximation of Integrals / 91
5.2.1. Volume Integrals / 91
5.2.2. Surface Integrals / 92
5.3. Methods of Interpolation / 94
5.3.1. Upwind Interpolation / 95
5.3.2. Linear Interpolation / 96
5.3.3. Upwind Interpolation of Higher Order / 98
5.3.4. Interpolation on Nonorthogonal Grids / 99
5.4. Boundary Conditions / 101
References and Suggested Reading / 102
Problems / 102
6 Stability of Transient Solutions 104
6.1. Introduction and Definition of Stability / 104
6.1.1. Discretization and Round-off Error / 106
6.1.2. Definition / 107
6.2. Stability Analysis / 108
6.2.1. Neumann Method / 108
6.2.2. Matrix Method / 116
6.3. Implicit versus Explicit Schemes—Stability and
Efficiency Considerations / 118
References and Suggested Reading / 120
Problems / 120
7 Application to Model Equations 121
7.1. Linear Convection Equation / 121
7.1.1. Simple Explicit Schemes / 123
7.1.2. Other Schemes / 125
7.2. One-Dimensional Heat Equation / 128
7.2.1. Simple Explicit Scheme / 129
7.2.2. Simple Implicit Scheme / 130
7.2.3. Crank-Nicolson Scheme / 131
7.3. Burgers and Generic Transport Equations / 132
7.4. Method of Lines Approach / 134
7.4.1. Adams Methods / 134
7.4.2. Runge-Kutta Methods / 135
7.5. Implicit Schemes: Solution of Tridiagonal Systems
by Thomas Algorithm / 136
References and Suggested Reading / 140
Problems / 140
II Methods 143
8 Steady-State Problems 145
8.1. Problems Reducible to Matrix Equations / 145
8.1.1. Elliptic PDE / 145
8.1.2. Implicit Integration of Nonsteady Equations / 149
8.2. Direct Methods / 150
8.2.1. Band-Diagonal and Block-Diagonal Matrices / 151
8.2.2. LU Decomposition / 153
8.3. Iterative Methods / 153
8.3.1. General Methodology / 154
8.3.2. Jacobi Iterations / 155
8.3.3. Gauss-Seidel Algorithm / 156
8.3.4. Successive Over- and Underrelaxation / 157
8.3.5. Convergence of Iterative Procedures / 158
8.3.6. Multigrid Methods / 161
8.3.7. Pseudo-transient Approach / 164
8.4. Systems of Nonlinear Equations / 164
8.4.1. Newton’s Algorithm / 165
8.4.2. Iteration Methods Using Linearization / 166
8.4.3. Sequential Solution / 168
References and Suggested Reading / 168
Problems / 169
9 Unsteady Problems of Fluid Flows and Heat Transfer 171
9.1. Introduction / 171
9.2. Compressible Flows / 172
9.2.1. Overview and General Comments / 172
9.2.2. Explicit MacCormack Method / 176
9.2.3. Beam-Warming Method / 178
9.2.4. Upwinding / 182
9.2.5. Methods for Purely Hyperbolic Systems / 185
9.3. Unsteady Conduction Heat Transfer / 187
9.3.1. Simple Methods for Multidimensional Heat Conduction / 188
9.3.2. Approximate Factorization / 189
9.3.3. ADI Method / 191
References and Suggested Reading / 192
Problems / 193
10 Incompressible Flows 196
10.1. General Considerations / 196
10.1.1. Introduction / 196
10.1.2. Role of Pressure / 197
10.2. Discretization Approach / 198
10.2.1. Colocated and Staggered Grids / 200
10.3. Projection Method for Unsteady Flows / 205
10.3.1. Explicit Schemes / 206
10.3.2. Implicit Schemes / 209
10.4. Projection Methods for Steady-State Flows / 212
10.4.1. SIMPLE / 214
10.4.2. SIMPLEC, SIMPLER, and PISO / 216
10.5. Other Methods / 218
10.5.1. Vorticity-Streamfunction Formulation for Two-Dimensional Flows / 218
10.5.2. Artificial Compressibility / 222
References and Suggested Reading / 222
Problems / 223
III Art of CFD 225
11 Turbulence 227
11.1. Introduction / 227
11.1.1. A Few Words About Turbulence / 227
11.1.2. Why Is the Computation of Turbulent Flows Difficult? / 231
11.1.3. Overview of Numerical Approaches / 232
11.2. Direct Numerical Simulation (DNS) / 234
11.2.1. Homogeneous Turbulence / 234
11.2.2. Inhomogeneous Turbulence / 237
11.3. Reynolds-Averaged Navier-Stokes (RANS) Models / 238
11.3.1. Reynolds-Averaged Equations / 240
11.3.2. Eddy Viscosity Hypothesis / 241
11.3.3. Algebraic Models / 242
11.3.4. Two-Equation Models / 243
11.3.5. Numerical Implementation of RANS Models / 246
11.4. Large-Eddy Simulation (LES) / 249
11.4.1. Filtered Equations / 250
11.4.2. Closure Models / 253
11.4.3. Implementation of LES in CFD Analysis: Numerical Resolution and Near-Wall Treatment / 255
References and Suggested Reading / 258
Problems / 259
12 Computational Grids 261
12.1. Introduction: Need for Irregular and Unstructured Grids / 261
12.2. Irregular Structured Grids / 264
12.2.1. Generation by Coordinate Transformation / 264
12.2.2. Examples / 266
12.2.3. Grid Quality / 268
12.3. Unstructured Grids / 269
12.3.1. Grid Generation / 271
12.3.2. Finite Volume Discretization on Unstructured Grids / 272
12.3.3. Cell Topology / 274
12.3.4. Grid Quality / 275
References and Suggested Reading / 278
Problems / 278
13 Conducting CFD Analysis 280
13.1. Overview: Setting and Solving a CFD Problem / 280
13.2. Errors and Uncertainty / 283
13.2.1. Errors in CFD Analysis / 283
13.2.2. Verification and Validation / 290
13.3. Adaptive Grids / 293
References and Suggested Reading / 295
INDEX 297