Solvent Microextraction: Theory and Practice
Buy Rights Online Buy Rights

Rights Contact Login For More Details

  • Wiley

More About This Title Solvent Microextraction: Theory and Practice

English

This book offers both a practical as well a theoretical approach to Solvent Microextraction (SME) and will help analytical chemists to evaluate SME for a given sample preparation. Introductory chapters overview a comparison of SME with other sample preparation methods, a summary of the technical aspects, and a detailed theoretical treatment of SME. The book then describes the practical aspects of the technique, with detailed “how to” chapters devoted to the preparation and analysis of atmospheric, solid and liquid environmental, clinical and industrial samples. This text will serve as both a handy laboratory desk-reference and an indispensible instructional tool.

English

JOHN M. KOKOSA, retired Professor of Chemistry at Kettering University, Flint, Michigan, conducts research in solvent microextraction, is an industrial consultant, and is an Adjunct Professor of Chemistry at Mott Community College in Flint. He was among the first scientists to explore headspace-solvent microextraction, chaired an invited symposium on solvent microextraction at PittCon 2006, and holds the U.S. patent for the automation of SME sampling. He is the author of numerous refereed publications and presentations and has authored a laboratory manual for freshmen organic chemistry and a commercial FTIR database for Thermo Nicolet instruments.

ANDRZEJ PRZYJAZNY is a Professor of Chemistry at Kettering University, Flint, Michigan. He has an MS and DSc in chemistry from the Gda¿nsk University of Technology (Poland) and a PhD in chemistry from Southern Illinois University at Carbondale. Dr. Przyjazny specializes in analytical chemistry of organic environmental pollutants and has published over fifty papers in refereed journals on this subject. He was one of the first scientists to explore headspace-solvent microextraction.

MICHAEL A. JEANNOT worked directly on the original development of drop-based SME at the University of Alberta, and has continued research in this area during his tenure at St. Cloud State University. He has coauthored five SME articles with a theoretical focus for Analytical Chemistry and the Journal of Chromatography A.

English

PREFACE.

1 SOLVENT MICROEXTRACTION: COMPARISON WITH OTHER POPULAR SAMPLE PREPARATION METHODS.

1.1 Introduction.

1.2 Comparison of Sample Preparation Methods.

1.3 Summary.

References.

2 BASIC MODES OF OPERATION FOR SOLVENT MICROEXTRACTION.

2.1 Basic Principles of SME.

2.2 Extraction Modes.

2.3 Solvents.

3 THEORY OF SOLVENT MICROEXTRACTION.

3.1 Introduction.

3.2 Thermodynamics.

3.3 Kinetics.

3.4 Calibration Methods.

3.5 Summary.

References.

4 PRACTICAL CONSIDERATIONS FOR USING SOLVENT MICROEXTRACTION.

4.1 Introduction.

4.2 General Recommendations.

4.3 General Questions to Consider Before Performing an Analysis.

4.4 Choosing the SME Mode.

4.5 Extraction Solvent.

4.6 Sample Volumes.

4.7 Syringe and Microdrop.

4.8 Chromatography and Detector Requirements.

4.9 Additional Extraction Parameters.

4.10 Calculation Examples for SDME.

4.11 Calculation Examples for DLLME and HFME.

4.12 Calculation Examples for the Effect of Ionic Strength on SDME.

4.13 Calculation Examples for HS-SDME.

4.14 Calculation Examples for the Effect of Ionic Strength on HS-SDME.

4.15 Calculation Examples for Static Headspace Extraction.

4.16 Calculation Examples for Solvent Solubility.

References.

5 METHOD DEVELOPMENT IN SOLVENT MICROEXTRACTION.

5.1 Introduction.

5.2 Extraction Mode Selection.

5.3 Static vs. Dynamic Extraction.

5.4 Selection of Manual vs. Automated Extraction.

5.5 Selection of Direct vs. Derivatization SME.

5.6 Extraction Solvent Selection.

5.7 Selection of Final Determination Method.

5.8 Selection of Extraction Optimization Method.

5.9 Optimization of Extraction Conditions.

References.

6 APPLICATIONS.

6.1 Introduction.

6.2 Gaseous Samples.

6.3 Liquid Samples.

6.4 Solid Samples.

6.5 Environmental Applications of SME.

6.6 Clinical and Forensic Applications of SME.

6.7 Application of SME in Food and Beverage Analysis.

6.8 Application of SME in the Analysis of Plant Material.

6.9 Application of SME in the Analysis of Consumer Products and Pharmaceuticals.

6.10 Outlook for Future Analytical Applications of SME.

6.11 Physicochemical Applications of SME.

References.

7 SME EXPERIMENTS.

7.1 Introduction.

7.2 Recommended Experimental Conditions.

7.3 Determination of Gasoline Diluents in Motor Oil by HS-SDME.

7.4 Determination of BTEX in Water by HS-SDME.

7.5 Analysis of Halogenated Disinfection By-Products by SDME and HS-SDME.

7.6 Analysis of Volatile Organic Compounds by SDME and HS-SDME.

7.7 Analysis of Residual Solvents in Drug Products by HS-SDME.

7.8 Arson Accelerant Analyses by HS-SDME.

7.9 Analysis of PAHs by SDME.

7.10 Determination of Acetone in Aqueous Solutions by Derivatization HS-SDME.

7.11 Determination of Pesticides in Soil by HF(2)ME.

7.12 Determination of PAHs and HOCs by DLLME.

7.13 Dynamic Headspace and Direct Immersion Extractions (DY-SME).

References.

ACRONYMS AND ABBREVIATIONS.

APPENDIX SME MODES: CLASSIFICATION AND GLOSSARY.

INDEX.

English

"The present book constitutes a unique source for the analyst that may find a useful compilation of reference material, a guide to proper experimental procedures, and a better understanding of how and why the technique works." (Chemistry Journals, 11 April 2011)

"Written by three pioneers and worldwide recognised specialists in the field, this timely monograph is not only an exhaustive and updated compilation of bibliography related to solvent microextration techniques and their applications in different work areas, but a practical and useful guide for all those interested in their direct application to practical case studies." (Chromatographia, 1 December 2010)

"Describe[s] procedures and applications of the research technique, which in the past dozen or so years has grown beyond academic laboratories to find work in industrial, forensic, clinical, and environmental analysis." (Book News, December 2009)

loading