Rights Contact Login For More Details
- Wiley
More About This Title Market Risk Analysis - Practical FinancialEconometrics, Volume II +CD
- English
English
All together, the Market Risk Analysis four volume set illustrates virtually every concept or formula with a practical, numerical example or a longer, empirical case study. Across all four volumes there are approximately 300 numerical and empirical examples, 400 graphs and figures and 30 case studies many of which are contained in interactive Excel spreadsheets available from the the accompanying CD-ROM . Empirical examples and case studies specific to this volume include:
- Factor analysis with orthogonal regressions and using principal component factors;
- Estimation of symmetric and asymmetric, normal and Student t GARCH and E-GARCH parameters;
- Normal, Student t, Gumbel, Clayton, normal mixture copula densities, and simulations from these copulas with application to VaR and portfolio optimization;
- Principal component analysis of yield curves with applications to portfolio immunization and asset/liability management;
- Simulation of normal mixture and Markov switching GARCH returns;
- Cointegration based index tracking and pairs trading, with error correction and impulse response modelling;
- Markov switching regression models (Eviews code);
- GARCH term structure forecasting with volatility targeting;
- Non-linear quantile regressions with applications to hedging.
- English
English
- English
English
List of Tables.
List of Examples.
Foreword.
Preface to Volume II.
II.1 Factor Models.
II.1.1 Introduction.
II.1.2 Single Factor Models.
II.13 Multi-Factor Models.
II.1.4 Case Study: Estimation of Fundamental Factor Models.
II.1.5 Analysis of Barra Model.
II.1.6 Tracking Error and Active Risk.
II.1.7 Summary and Conclusions.
II.2 Principal Component Analysis.
II.2.1 Introduction.
II.2.2 Review of Principal Component Analysis.
II.2.3 Case Study: PCA of UK Government Yield Curves.
II.2.4 Term Structure Factor Models.
II.2.5 Equity PCA Factor Models.
II.2.6 Summary and Conclusions.
II.3 Classical Models of Volatility and Correlation.
II.3.1 Introduction.
II.3.2 Variance and Volatility.
II.3.3 Covariance and Correlation.
II.3.4 Equally Weighted Averages.
II.3.5 Precision of Equally Weighted Estimates.
II.3.6 Case Study: Volatility and Correlation of US Treasuries.
II.3.7 Equally Weighted Moving Averages.
II.3.8 Exponentially Weighted Moving Averages.
II.3.9 Summary and Conclusions.
II.4 Introduction to GARCH Models.
II.4.1 Introduction.
II.4.2 The Symmetric Normal GARCH Model.
II.4.3 Asymmetric GARCH Models.
II.4.4 Non-Normal GARCH Models.
II.4.5 GARCH Covariance Matrices.
II.4.6 Orthogonal GARCH.
II.4.7 Monte Carlo Simulation with GARCH Models.
II.4.8 Applications of GARCH Models.
II.4.9 Summary and Conclusions.
II.5 Time Series Models and Cointegration.
II.5.1 Introduction.
II.5.2 Stationary Processes.
II.5.3 Stochastic Trends.
II.5.4 Long Term Equilibrium.
II.5.5 Modelling Short Term Dynamics.
II.5.6 Summary and Conclusions.
II.6 Introduction to Copulas.
II.6.1 Introduction.
II.6.2 Concordance Metrics.
II.6.3 Copulas and Associated Theoretical Concepts.
II.6.4 Examples of Copulas.
II.6.5 Conditional Copula Distributions and Quantile Curves.
II.6.6 Calibrating Copulas.
II.6.7 Simulation with Copulas.
II.6.8 Market Risk Applications.
II.6.9 Summary and Conclusions.
II.7 Advanced Econometric Models.
II.7.1 Introduction.
II.7.2 Quantile Regression.
II.7.3 Case Studies on Quantile Regression.
II.7.4 Other Non-Linear Regression Models.
II.7.5 Markov Switching Models.
II.7.6 Modelling Ultra High Frequency Data.
II.7.7 Summary and Conclusions.
II.8 Forecasting and Model Evaluation.
II.8.1 Introduction.
II.8.2 Returns Models.
II.8.3 Volatility Models.
II.8.4 Forecasting the Tails of a Distribution.
II.8.5 Operational Evaluation.
II.8.6 Summary and Conclusions.
References.
Index.