Rights Contact Login For More Details
- Wiley
More About This Title Air Pollution Prevention and Control - Bioreactors and Bioenergy
- English
English
Over the past two decades, the use of microbes to remove pollutants from contaminated air streams has become a widely accepted and efficient alternative to the classical physical and chemical treatment technologies. This book focuses on biotechnological alternatives, looking at both the optimization of bioreactors and the development of cleaner biofuels. It is the first reference work to give a broad overview of bioprocesses for the mitigation of air pollution. Essential reading for researchers and students in environmental engineering, biotechnology, and applied microbiology, and industrial and governmental researchers.
- English
English
Christian Kennes is the editor of Air Pollution Prevention and Control: Bioreactors and Bioenergy, published by Wiley.
Maria C. Veiga is the editor of Air Pollution Prevention and Control: Bioreactors and Bioenergy, published by Wiley.
- English
English
Preface xxi
I FUNDAMENTALS AND MICROBIOLOGICAL ASPECTS 1
1 Introduction to Air Pollution 3
Christian Kennes and Maria C. Veiga
1.1 Introduction 3
1.2 Types and sources of air pollutants 3
1.2.1 Particulate matter 5
1.2.2 Carbon monoxide and carbon dioxide 6
1.2.3 Sulphur oxides 7
1.2.4 Nitrogen oxides 7
1.2.5 Volatile organic compounds (VOCs) 9
1.2.6 Odours 10
1.2.7 Ozone 11
1.2.8 Calculating concentrations of gaseous pollutants 11
1.3 Air pollution control technologies 11
1.3.1 Particulate matter 11
1.3.2 Volatile organic and inorganic compounds 12
1.3.2.1 Nonbiological processes 12
1.3.2.2 Bioprocesses 15
1.3.3 Environmentally friendly bioenergy 17
1.4 Conclusions 17
References 17
2 Biodegradation and Bioconversion of Volatile Pollutants 19
Christian Kennes, Haris N. Abubackar and Maria C. Veiga
2.1 Introduction 19
2.2 Biodegradation of volatile compounds 20
2.2.1 Inorganic compounds 20
2.2.1.1 Hydrogen sulphide (H2S) 20
2.2.1.2 Ammonia 20
2.2.2 Organic compounds 21
2.2.2.1 CxHy pollutants 22
2.2.2.2 CxHyOz pollutants 22
2.2.2.3 Organic sulphur compounds 22
2.2.2.4 Halogenated organic compounds 23
2.3 Mass balance calculations 24
2.4 Bioconversion of volatile compounds 25
2.4.1 Carbon monoxide and carbon dioxide 25
2.4.2 Volatile organic compounds (VOCs) 26
2.5 Conclusions 27
References 27
3 Identification and Characterization of Microbial Communities in Bioreactors 31
Luc Malhautier, L. Cabrol, S. Bayle and J.-L. Fanlo
3.1 Introduction 31
3.2 Molecular techniques to characterize the microbial communities in bioreactors 32
3.2.1 Quantification of the community members 32
3.2.1.1 Microscopic direct counts 32
3.2.1.2 Quantitative PCR 33
3.2.2 Assessment of microbial community diversity and structure 34
3.2.2.1 Biochemical methods 34
3.2.2.2 Genetic fingerprinting methods 34
3.2.2.3 Analysis of fingerprint data by multivariate statistical tools and diversity indices 38
3.2.3 Determination of the microbial community composition 39
3.2.3.1 Construction of small sub-unit (SSU) rRNA clone libraries followed by phylogenetic identification by randomly sequencing the clones 39
3.2.3.2 Fluorescent in situ hybridization (FISH) 39
3.2.4 Techniques linking microbial identity to ecological function 40
3.2.4.1 Stable isotope probing (SIP) 40
3.2.4.2 Microautoradiography combined with FISH (FISH-MAR) 41
3.2.5 Microarray techniques 41
3.2.6 Synthesis 42
3.3 The link of microbial community structure with ecological function in engineered ecosystems 42
3.3.1 Introduction 42
3.3.2 Temporal and spatial dynamics of the microbial community structure under stationary conditions in bioreactors 43
3.3.2.1 Temporal stability and dynamics of the total bacterial community structure in the steady state 43
3.3.2.2 Microbial and functional stratification along the biofilter height 45
3.3.2.3 The microbial community structure–ecosystem function relationship 45
3.3.3 Impact of environmental disturbances on the microbial community structure within bioreactors 45
3.3.4 Conclusions 47
References 47
II BIOREACTORS FOR AIR POLLUTION CONTROL 57
4 Biofilters 59
Eldon R. Rene, Maria C. Veiga and Christian Kennes
4.1 Introduction 59
4.2 Historical perspective of biofilters 59
4.3 Process fundamentals 60
4.4 Operation parameters of biofilters 62
4.4.1 Empty-bed residence time (EBRT) 62
4.4.2 Volumetric loading rate (VLR) 63
4.4.3 Mass loading rate (MLR) 63
4.4.4 Elimination capacity (EC) 63
4.4.5 Removal efficiency (RE) 63
4.4.6 CO2 production rate (PCO2) 63
4.5 Design considerations 64
4.5.1 Reactor sizing 64
4.5.2 Irrigation system 66
4.5.3 Leachate collection and disposal 66
4.6 Start-up of biofilters 68
4.7 Parameters affecting biofilter performance 70
4.7.1 Inlet concentrations and pollutant load 70
4.7.2 Composition of waste gas and interaction patterns 71
4.7.3 Biomass support medium 72
4.7.4 Temperature 75
4.7.5 pH 78
4.7.6 Oxygen availability 79
4.7.7 Nutrient availability 80
4.7.8 Moisture content and relative humidity 81
4.7.9 Polluted gas flow direction 83
4.7.10 Carbon dioxide generation rates 83
4.7.11 Pressure drop 85
4.8 Role of microorganisms and fungal growth in biofilters 87
4.9 Dynamic loading pattern and starvation conditions in biofilters 89
4.10 On-line monitoring and control (intelligent) systems for biofilters 93
4.10.1 On-line flame ionization detector (FID) and photo-ionization detector (PID) analysers 93
4.10.2 On-line proton transfer reaction–mass spectrometry (PTR-MS) 94
4.10.3 Intelligent moisture control systems 94
4.10.4 Differential neural network (DNN) sensor 95
4.11 Mathematical expressions for biofilters 95
4.12 Artificial neural network-based models 97
4.12.1 Back error propagation (BEP) algorithm 97
4.12.2 Important considerations during neural network modelling 99
4.12.2.1 Data selection, division and normalization 99
4.12.2.2 Network parameters 100
4.12.2.3 Sensitivity analysis of input parameters 101
4.12.2.4 Estimating errors in prediction 102
4.12.3 Neural network model development for biofilters and specific examples 103
4.13 Fuzzy logic-based models 105
4.14 Adaptive neuro-fuzzy interference system-based models for biofilters 108
4.15 Conclusions 111
References 111
5 Biotrickling Filters 121
Christian Kennes and Maria C. Veiga
5.1 Introduction 121
5.2 Main characteristics of BTFs 122
5.2.1 General aspects 122
5.2.2 Packing material 123
5.2.3 Biomass and biofilm 126
5.2.4 Trickling phase 126
5.2.5 Gas EBRT 128
5.2.6 Liquid and gas velocities 129
5.3 Pressure drop and clogging 130
5.3.1 Excess biomass accumulation 130
5.3.1.1 Limitation of biomass growth 131
5.3.1.2 Physical and chemical methods 132
5.3.1.3 Biological methods – predation 132
5.3.1.4 Cleaning the packing material outside the reactor 133
5.3.2 Accumulation of solid chemicals 133
5.4 Full-scale applications and scaling up 134
5.5 Conclusions 135
References 135
6 Bioscrubbers 139
Pierre Le Cloirec and Philippe Humeau
6.1 Introduction 139
6.2 General approach of bioscrubbers 140
6.3 Operating conditions 141
6.3.1 Absorption column 142
6.3.2 Biodegradation step – activated sludge reactor 143
6.4 Removing families of pollutants 143
6.4.1 Volatile organic compound (VOC) removal 144
6.4.2 Odor control 146
6.4.3 Sulfur compounds degradation 146
6.4.3.1 Sulfur compounds present in air 146
6.4.3.2 Biogas desulfurization 147
6.4.3.3 Ammonia absorption and bio-oxidation 147
6.5 Treatment of by-products generated by bioscrubbers 148
6.6 Conclusions and trends 148
References 149
7 Membrane Bioreactors 155
Raquel Lebrero, Ra´ ul Mu˜ noz, Amit Kumar and Herman Van Langenhove
7.1 Introduction 155
7.2 Membrane basics 156
7.2.1 Types of membranes 156
7.2.1.1 Porous membranes 157
7.2.1.2 Dense membranes 157
7.2.1.3 Composite membranes 158
7.2.2 Membrane materials 159
7.2.3 Membrane characterization parameters 159
7.2.3.1 Membrane thickness 159
7.2.3.2 Membrane performance: selectivity and permeance 159
7.2.4 Mass transport through the membrane 160
7.2.4.1 Transport in porous membranes 162
7.2.4.2 Transport in homogeneous membranes 162
7.3 Reactor configurations 163
7.3.1 Flat-sheet membranes 164
7.3.1.1 Plate and frame modules 164
7.3.1.2 Spiral-wound modules 164
7.3.2 Tubular configuration membranes 165
7.3.2.1 Tubular modules 165
7.3.2.2 Capillary membrane modules 166
7.3.2.3 Hollow-fiber membrane modules 166
7.3.3 Membrane-based bioreactors 166
7.4 Microbiology 166
7.5 Performance of membrane bioreactors 168
7.5.1 Membrane-based bioreactors 168
7.5.2 Bioreactor operation: influence of the operating parameters 169
7.6 Membrane bioreactor modeling 170
7.7 Applications of membrane bioreactors in biological waste-gas treatment 172
7.7.1 Comparison with other technologies 172
7.8 New applications: CO2–NOx sequestration 173
7.8.1 NOx removal 173
7.8.2 CO2 sequestration 176
7.9 Future needs 177
References 178
8 Two-Phase Partitioning Bioreactors 185
Hala Fam and Andrew J. Daugulis
8.1 Introduction 185
8.2 Features of the sequestering phase – selection criteria 186
8.3 Liquid two-phase partitioning bioreactors (TPPBs) 187
8.3.1 Performance 187
8.3.2 Mass transfer 189
8.3.2.1 Mass transfer pathways and mechanisms 190
8.3.2.2 Substrate uptake mechanisms 191
8.3.2.3 Mass transfer of poorly soluble substrates and oxygen 192
8.3.2.4 Physical parameters affecting Kla 193
8.3.3 Modeling and design elements 194
8.3.4 Limitations and research opportunities 196
8.4 Solids as the partitioning phase 197
8.4.1 Rationale 197
8.4.2 Performance 197
8.4.3 Mass transfer 198
8.4.4 Modeling and design elements 199
8.4.5 Limitations and research opportunities 200
References 200
9 Rotating Biological Contactors 207
R. Ravi, K. Sarayu, S. Sandhya and T. Swaminathan
9.1 Introduction 207
9.1.1 Limitations of conventional gas-phase bioreactors 208
9.2 The rotating biological contactor 209
9.2.1 Modified RBCs for waste-gas treatment 210
9.2.1.1 Generation of humidified VOC stream 210
9.2.1.2 Biofilm development and start-up 211
9.2.1.3 VOC removal studies 212
9.3 Studies on removal of dichloromethane in modified RBCs 213
9.3.1 Comparison of different bioreactors (biofilters, biotrickling filters, and modified RBCs) 215
9.3.2 Studies on removal of benzene and xylene in modified RBCs 216
9.3.3 Microbiological studies of biofilms 217
9.3.3.1 Phylogenic analysis 219
References 219
10 Innovative Bioreactors and Two-Stage Systems 221
Eldon R. Rene, Maria C. Veiga and Christian Kennes
10.1 Introduction 221
10.2 Innovative bioreactor configurations 222
10.2.1 Planted biofilter 222
10.2.2 Rotatory-switching biofilter 223
10.2.3 Tubular biofilter 224
10.2.4 Fluidized-bed bioreactor 225
10.2.5 Airlift and bubble column bioreactors 227
10.2.6 Monolith bioreactor 229
10.2.7 Foam emulsion bioreactor 231
10.2.8 Fibrous bed bioreactor 233
10.2.9 Horizontal-flow biofilm reactor 234
10.3 Two-stage systems for waste-gas treatment 235
10.3.1 Adsorption pre-treatment plus bioreactor 235
10.3.2 Bioreactor plus adsorption polishing 237
10.3.3 UV photocatalytic reactor plus bioreactor 237
10.3.4 Bioreactor plus bioreactor 240
10.4 Conclusions 242
References 243
III BIOPROCESSES FOR SPECIFIC APPLICATIONS 247
11 Bioprocesses for the Removal of Volatile Sulfur Compounds from Gas Streams 249
Albert Janssen, Pim L.F. van den Bosch, Robert Cornelis van Leerdam, and Marco de Graaff
11.1 Introduction 249
11.2 Toxicity of VOSCs to animals and humans 250
11.3 Biological formation of VOSCs 251
11.4 VOSC-producing and VOSC-emitting industries 252
11.4.1 VOSCs produced from biological processes 252
11.4.2 Chemical processes and industrial applications 252
11.4.3 Oil and gas 253
11.5 Microbial degradation of VOSCs 253
11.5.1 Aerobic degradation 253
11.5.2 Anaerobic degradation 254
11.5.3 Degradation via sulfate reduction 255
11.5.4 Anaerobic degradation of higher thiols 255
11.5.5 Inhibition of microorganisms 256
11.6 Treatment technologies for gas streams containing volatile sulfur compounds 256
11.6.1 Biofilters 256
11.6.2 Bioscrubbers 258
11.7 Operating experience from biological gas treatment systems 261
11.7.1 Shell–Paques process for H2S removal 266
11.8 Future developments 266
References 266
12 Bioprocesses for the Removal of Nitrogen Oxides 275
Yaomin Jin, Lin Guo, Osvaldo D. Frutos, Maria C. Veiga and Christian Kennes
12.1 Introduction 275
12.2 NOx emission at wastewater treatment plants (WWTPs) 276
12.2.1 Nitrification 276
12.2.2 Denitrification 276
12.2.3 Parameters that affect the formation of nitrogen oxides 277
12.2.3.1 DO concentration 277
12.2.3.2 High nitrite concentration 278
12.2.3.3 Cu2+ concentration 278
12.2.3.4 Salinity 278
12.2.3.5 pH effects 278
12.2.3.6 Solids retention time 278
12.2.3.7 Sudden changes in operating parameters 278
12.2.3.8 Low COD/N ratios 279
12.3 Recent developments in bioprocesses for the removal of nitrogen oxides 279
12.3.1 NOx removal 279
12.3.1.1 Rotating drum bioreactor (RDB) 279
12.3.1.2 BioDeNOx 280
12.3.1.3 Hollow-fiber membrane bioreactor (HFMB) 282
12.3.1.4 Photobioreactor 283
12.3.1.5 Integrated system 284
12.3.2 N2O removal 285
12.3.2.1 Bioelectrochemical system 285
12.3.2.2 Biotrickling filter 285
12.3.2.3 Biofilter 286
12.4 Challenges in NOx treatment technologies 287
12.5 Conclusions 288
References 288
13 Biogas Upgrading 293
M. Estefanía López, Eldon R. Rene, Maria C. Veiga and Christian Kennes
13.1 Introduction 293
13.2 Biotechnologies for biogas desulphurization 294
13.2.1 Environmental aspects 294
13.2.2 The natural sulphur cycle and sulphur-oxidizing bacteria 294
13.2.3 Bioreactor configurations for hydrogen sulphide removal at laboratory scale 295
13.2.3.1 Hydrogen sulphide biodegradation under aerobic or oxygen-limited conditions 295
13.2.3.2 Hydrogen sulphide removal under anoxic conditions 302
13.2.4 Case studies of biogas desulphurization in full-scale systems 302
13.2.4.1 THIOPAQ biogas desulphurization process 302
13.2.4.2 BioSulfurex biogas desulphurization process 304
13.2.4.3 BIO-Sulfex biogas desulphurization process 305
13.3 Removal of mercaptans 306
13.4 Removal of ammonia and nitrogen compounds 307
13.5 Removal of carbon dioxide 308
13.6 Removal of siloxanes 309
13.7 Comparison between biological and non-biological methods 311
13.8 Conclusions 311
References 315
IV ENVIRONMENTALLY FRIENDLY BIOENERGY 319
14 Biogas 321
Marta Ben, Christian Kennes and Maria C. Veiga
14.1 Introduction 321
14.2 Anaerobic digestion 321
14.2.1 A brief history 321
14.2.2 Overview of the anaerobic digestion process 323
14.2.2.1 Biological process 323
14.2.2.2 Environmental factors affecting anaerobic digestion 323
14.2.2.3 Important parameters in anaerobic digesters 327
14.3 Substrates 328
14.3.1 Agricultural and farming wastes 328
14.3.1.1 Manure 328
14.3.1.2 Agricultural wastes 329
14.3.2 Industrial wastes 329
14.3.2.1 Food processing waste 330
14.3.2.2 Pulp and paper industry 332
14.3.3 Urban wastes 333
14.3.3.1 Food waste 333
14.3.4 Sewage sludge 333
14.4 Biogas 334
14.4.1 Biogas composition 334
14.4.2 Substrate influence on biogas composition 335
14.5 Bioreactors 335
14.5.1 Batch reactors 337
14.5.2 Continuously stirred tank reactor (CSTR) 337
14.5.3 Continuously stirred tank reactor with solids recycle (CSTR/SR) 337
14.5.4 Plug-flow reactor 337
14.5.5 Upflow anaerobic sludge blanket (UASB) 337
14.5.6 Attached film digester 338
14.5.7 Two-phase digester 338
14.6 Environmental impact of biogas 338
14.7 Conclusions 339
References 339
15 Biohydrogen 345
Bikram K. Nayak, Soumya Pandit and Debabrata Das
15.1 Introduction 345
15.1.1 Current status of hydrogen production and present use of hydrogen 346
15.1.2 Biohydrogen from biomass: present status 346
15.2 Environmental impacts of biohydrogen production 346
15.2.1 Air pollution due to conventional hydrocarbon-based fuel combustion 346
15.2.2 Biohydrogen, a zero-carbon fuel as a potential alternative 348
15.3 Properties and production of hydrogen 348
15.3.1 Properties of zero-carbon fuel 348
15.3.2 Biohydrogen production processes 350
15.3.2.1 Biophotolysis of water using algae and cyanobacteria 350
15.3.2.2 Photo-fermentation of organic compounds by photosynthetic bacteria 353
15.3.2.3 Factors involved in the production of biohydrogen using light 354
15.3.2.4 Dark fermentation 356
15.3.2.5 Microbial electrolysis cell (MEC) 359
15.3.2.6 Hybrid systems using dark, photo-fermentations and/or MECs 363
15.4 Potential applications of hydrogen as a zero-carbon fuel 363
15.4.1 Transport sector 363
15.4.1.1 Current status of technology 364
15.4.1.2 Advantages and disadvantages of hydrogen as a transport fuel 365
15.4.2 Fuel cells 366
15.4.2.1 Classifications of fuel cells 366
15.4.2.2 Characteristics of fuel cells 368
15.4.2.3 Current status of technology 369
15.4.2.4 Advantages and disadvantages of hydrogen-based fuel cells 370
15.5 Policies and economics of hydrogen production 371
15.5.1 Economics of biohydrogen production 372
15.6 Issues and barriers 373
15.7 Future prospects 374
15.8 Conclusion 375
References 375
16 Catalytic Biodiesel Production 383
Zhenzhong Wen, Xinhai Yu, Shan-Tung Tu and Jinyue Yan
16.1 Introduction 383
16.2 Trends in biodiesel production 384
16.2.1 Reactors 384
16.2.2 Catalysts 389
16.2.2.1 Solid base catalysts 389
16.2.2.2 Solid acid catalysts 391
16.2.2.3 Enzyme catalysts 393
16.3 Challenges for biodiesel production at industrial scale 393
16.3.1 Economic analysis 393
16.3.2 Ecological considerations 393
16.4 Recommendations 394
16.5 Conclusions 395
References 395
17 Microalgal Biodiesel 399
Hugo Pereira, Helena M. Amaro, Nadpi G. Katkam, Luísa Barreira, A. Catarina Guedes, João Varela and F. Xavier Malcata
17.1 Introduction 399
17.2 Wild versus modified microalgae 402
17.3 Lipid extraction and purification 404
17.3.1 Mechanical methods 405
17.3.2 Chemical methods 406
17.4 Lipid transesterification 407
17.4.1 Acid-catalyzed transesterification 408
17.4.2 Base-catalyzed transesterification 408
17.4.3 Heterogeneous acid/base-catalyzed transesterification 410
17.4.4 Lipase-catalyzed transesterification 410
17.4.5 Ionic liquid-catalyzed reactions 411
17.5 Economic considerations 412
17.5.1 Competition between microalgal biodiesel and biofuels 412
17.5.2 Main challenges to biodiesel production from microalgae 413
17.5.3 Economics of biodiesel production 414
17.6 Environmental considerations 415
17.6.1 Uptake of carbon dioxide 416
17.6.2 Upgrade of wastewaters 416
17.6.3 Management of microalgal biomass 417
17.7 Final considerations 418
17.7.1 Current state 418
17.7.2 Future perspectives 418
References 420
18 Bioethanol 431
Johan W. van Groenestijn, Haris N. Abubackar, Maria C. Veiga and Christian Kennes
18.1 Introduction 431
18.2 Fermentation of lignocellulosic saccharides to ethanol 432
18.2.1 Raw materials 432
18.2.2 Pretreatment 434
18.2.2.1 Dilute acid 434
18.2.2.2 Liquid hot water 435
18.2.2.3 Concentrated acid 436
18.2.2.4 Steam explosion 436
18.2.2.5 Ammonia fibre expansion (AFEX) 436
18.2.2.6 Wet oxidation 437
18.2.2.7 Ozonolysis 437
18.2.2.8 Alkali 437
18.2.2.9 The Organosolv process 437
18.2.2.10 Lignolytic fungi 438
18.2.2.11 Other 439
18.2.3 Production of inhibitors 439
18.2.4 Hydrolysis 439
18.2.5 Fermentation 440
18.3 Syngas conversion to ethanol – biological route 441
18.3.1 Sources of carbon monoxide 441
18.3.1.1 Biomass gasification for syngas production 441
18.3.1.2 Industrial waste gases 443
18.3.2 The Wood–Ljungdahl pathway involved in the bioconversion of carbon monoxide 445
18.3.3 Parameters affecting the bioconversion of carbon monoxide to ethanol 446
18.3.3.1 Fermentation medium pH and temperature 446
18.3.3.2 Mass transfer limitations 447
18.3.3.3 Fermentation media composition 448
18.3.3.4 Effect of gas composition 449
18.3.3.5 Media redox potential 449
18.4 Demonstration projects 450
18.5 Comparison of conventional fuels and bioethanol (corn, cellulosic, syngas) on air pollution 451
18.6 Key problems and future research needs 455
18.7 Conclusions 456
References 456
V CASE STUDIES 465
19 Biotrickling Filtration of Waste Gases from the Viscose Industry 467
Andreas Willers, Christian Dressler and Christian Kennes
19.1 The waste-gas situation in the viscose industry 467
19.1.1 The viscose process 467
19.1.2 Overview of emission points 468
19.1.3 Technical solutions to treat the emissions 469
19.1.3.1 CS2 condensation 469
19.1.3.2 Wet catalytic oxidation 469
19.1.3.3 Regenerative adsorption 470
19.1.3.4 Thermal oxidation 470
19.1.3.5 Scrubbers 470
19.1.4 Potential to use biotrickling filters in the viscose industry 470
19.2 Biological CS2 and H2S oxidation 471
19.3 Case study of biological waste-gas treatment in the casing industry 472
19.3.1 Products from viscose 472
19.3.2 Process flowsheet of fibre-reinforced cellulose casing (FRCC) 473
19.3.2.1 Production of viscose 473
19.3.2.2 Production of fibre-reinforced cellulose casing 473
19.3.3 Alternatives for biotrickling filter configurations 473
19.3.4 Characteristics of the CaseTech plant 475
19.3.5 Description of the BioGat installation 475
19.3.6 Performance of the BioGat process 475
19.3.6.1 Start-up problems 475
19.3.6.2 Reasons for increasing pressure drop 475
19.3.6.3 Tower packing material 479
19.3.6.4 Influence of sulphuric acid on biological degradation 480
19.3.6.5 Removal efficiency 481
19.4 Conclusions 484
References 484
20 Biotrickling Filters for Removal of Volatile Organic Compounds from Air in the Coating Sector 485
Carlos Lafita, F. Javier Álvarez-Hornos, Carmen Gabaldón, Vicente Martínez-Soria and Josep-Manuel Penya-Roja
20.1 Introduction 485
20.2 Case study 1: VOC removal in a furniture facility 486
20.2.1 Characterization of the waste-gas sources 486
20.2.2 Design and operation of the system 487
20.2.3 Performance data 488
20.2.4 Economic aspects 490
20.3 Case study 2: VOC removal in a plastic coating facility 491
20.3.1 Characterization of the waste-gas sources 492
20.3.2 Design and operation of the system 492
20.3.3 Performance data 493
20.3.4 Economic aspects 495
References 496
21 Industrial Bioscrubbers for the Food and Waste Industries 497
Pierre Le Cloirec and Philippe Humeau
21.1 Introduction 497
21.2 Food industry emissions 498
21.2.1 Identification and quantification of waste-gas emissions 498
21.2.2 Choice of the technology 499
21.2.3 Design and operating conditions 500
21.2.3.1 Gas–liquid transfer 500
21.2.3.2 Biological regeneration of the washing solution 500
21.2.4 Performance of the system 501
21.3 Bioscrubbing treatment of gaseous emissions from waste composting 502
21.3.1 Waste-gas emissions: nature, concentrations, and flow 503
21.3.2 Choice of the gas treatment process 504
21.3.3 Design and operating conditions 505
21.3.4 Gas collection system 506
21.3.5 Gas treatment system 508
21.3.6 Performance of the overall system 509
21.4 Conclusions and perspectives 510
References 511
22 Desulfurization of biogas in biotrickling filters 513
David Gabriel, Marc A. Deshusses and Xavier Gamisans
22.1 Introduction 513
22.2 Microbiology and stoichiometry of sulfide oxidation 514
22.2.1 Microbiology of sulfide oxidation 514
22.2.2 Stoichiometry of sulfide biological oxidation 515
22.3 Case study background and description of biotrickling filter 517
22.3.1 Site description 517
22.3.2 Biotrickling filter design 517
22.4 Operational aspects of the full-scale biotrickling filter 519
22.4.1 Start-up and biotrickling filter performance 519
22.4.2 Facing operational and design challenges 520
22.5 Economic aspects of desulfurizing biotrickling filters 522
References 522
23 Full-Scale Biogas Upgrading 525
J. Langerak, R. Lems and E.H.M. Dirkse
23.1 Introduction 525
23.2 Case 1: Zalaegerszeg, PWS system with car fuelling station 526
23.2.1 Biogas composition and biomethane requirements at Zalaegerszeg 526
23.2.2 Plant configuration at Zalaegerszeg 526
23.2.2.1 Pre-treatment at Zalaegerszeg 528
23.2.2.2 Upgrading technique at Zalaegerszeg 528
23.2.2.3 Post-treatment at Zalaegerszeg 529
23.3 Case 2: Zwolle, PWS system with gas grid injection 529
23.3.1 Biogas composition and biomethane requirements at Zwolle 531
23.3.2 Plant configuration at Zwolle 531
23.3.2.1 Pre-treatment at Zwolle 532
23.3.2.2 Upgrading technique at Zwolle 532
23.3.2.3 Post-treatment at Zwolle 533
23.4 Case 3: Wijster, PWS system with gas grid injection 534
23.4.1 Biogas composition and biomethane requirements at Wijster 534
23.4.2 Plant configuration at Wijster 534
23.4.2.1 Pre-treatment at Wijster 535
23.4.2.2 Upgrading technique at Wijster 536
23.4.2.3 Post-treatment at Wijster 536
23.5 Case 4: Poundbury, MS system with gas grid injection 536
23.5.1 Biogas composition and biomethane requirements at Poundbury 537
23.5.2 Plant configuration at Poundbury 537
23.5.2.1 Pre-treatment at Poundbury 538
23.5.2.2 Upgrading technique at Poundbury 538
23.5.2.3 Post-treatment at Poundbury 538
23.6 Configuration overview and evaluation 539
23.7 Capital and operational expenses 540
23.7.1 Zalaegerszeg 540
23.7.2 Zwolle 541
23.7.3 Wijster 541
23.7.4 Poundbury 541
23.7.5 Overview table of capital and operating expenses 541
23.8 Conclusions 542
References 543
Index 545
- English
English
“Summing Up: Recommended. Upper-division undergraduates through professionals/practitioners.” (Choice, 1 February 2014)
“This book is an excellent compilation of engineering and scientific data pertaining to biological systems for both pollution control and energy production, providing real-world scientific information and scholarly research.” (Chemical Engineering Progress, 1 August 2013)
"I highly recommend the landmark and all encompassing book Air Pollution Prevention and Control: Bioreactors and Bioenergy edited by Christian Kennes and Maria C. Veiga, to any students, faculty, researchers, in environmental engineering, biotechnology, and applied microbiology, business leaders in industries facing air pollution challenges, and government policy makers seeking alternative concepts for air pollution control. This book provides the most proven and widely accepted biotechnological solutions to any air pollutant based problems." (Blog Business World, 10 June 2013)