Rights Contact Login For More Details
- Wiley
More About This Title Emerging Technologies for Health and Medicine: Virtual Reality, Augmented Reality, Artificial Intelligence, Internet of Things, Robotics, Industry 4.0
- English
English
With the current advances in technology innovation, the field of medicine and healthcare is rapidly expanding and, as a result, many different areas of human health diagnostics, treatment and care are emerging. Wireless technology is getting faster and 5G mobile
technology allows the Internet of Medical Things (IoMT) to greatly improve patient care and more effectively prevent illness from developing. This book provides an overview and review of the current and anticipated changes in medicine and healthcare due to new technologies and faster communication between users and devices.
This groundbreaking book presents state-of-the-art chapters on many subjects including:
- A review of the implications of VR and AR healthcare applications
- A review of current augmenting dental care
- An overview of typical human-computer interaction (HCI) that can help inform the development of user interface designs and novel ways to evaluate human behavior to responses in virtual reality (VR) and other new technologies
- A review of telemedicine technologies
- Building empathy in young children using augmented reality
- AI technologies for mobile health of stroke monitoring & rehabilitation robotics control
- Mobile doctor brain AI App
- An artificial intelligence mobile cloud computing tool
- Development of a robotic teaching aid for disabled children
- Training system design of lower limb rehabilitation robot based on virtual reality
- English
English
Dac-Nhuong Le obtained his PhD in computer science from Vietnam National University, Vietnam in 2015. He is Deputy-Head of Faculty of Information Technology, Haiphong University, Vietnam. His area of research includes: evaluation computing and approximate algorithms, network communication, security and vulnerability, network performance analysis and simulation, cloud computing, IoT and image processing in biomedicine. He has authored 4 computer science books and has multiple research articles in international journals.
Chung Van Le is the Vice-Director at the Centre of Visualization and Simulation and Lead Software Developer for 3D virtual body system for teaching anatomy and virtual endoscopic techniques for medical students at Duy Tan University in Vietnam.
Jolanda G. Tromp is a VR/AR/AI/IoT Human-Computer Interaction expert for user-centered design and evaluation for new technologies, with 20 years' experience as a principal Usability Investigator. She has a PhD in Systematic Usability Design and Evaluation for Collaborative Virtual Environments, 2001, University of Nottingham, United Kingdom and a BSc in Psychology (with honors) from the University of Amsterdam, Holland. She is a research consultant for the Center of Visualization and Simulation and the Duy Tan University, Vietnam; for the Mixed Reality Task Group of the State University of New York; and for the Global Simulations Working Group.
Nguyen Gia Nhu, received his PhD degree in computer science from Ha Noi University of Science, Vietnam National University, Vietnam. He is now the Vice Dean of Graduate School at Duy Tan University. He has more than 40 publications in reputed international conferences, journals and book chapter contributions. His research interests include algorithm theory, network optimization and wireless security.
- English
English
List of Figures xiii
List of Tables xv
Foreword xix
Preface xxiii
Acknowledgments xxix
Acronyms xxxi
Part I Virtual Reality, Augmented Reality Technologies and Applications for Health And Medicine
1 Reviews of the Implications of VR/AR Health Care Applications 3
Muhammad Sharif, Ghulam Jillani Ansari, Mussarat Yasmin, Steven Lawrence Fernandes
1.1 Introduction 4
1.2 Virtual Reality and Augmented Reality 5
1.2.1 Virtual Realty 5
1.2.2 Augmented Reality or Mixed Reality 6
1.2.3 Line of Difference between VR/AR 6
1.2.4 Formats and Design Elements of VR/AR Technology 7
1.2.5 Presence, Reality and Realism 8
1.3 Features of VR/AR Technology in Health Care 9
1.3.1 Implications of VR/AR Technology in Health Care Services and Applications 9
1.3.2 Health Care Services 9
1.3.3 Health Care Applications 11
1.4 Future Assessments in VR/AR Technology 14
1.5 Key Challenges for Adopting VR/AR Technology 14
1.6 Conclusion 15
References 15
2 Using 3D Simulation in Medical Education: A Comparative Test of Teaching Anatomy using VR 21
Chung Van Le, J.G. Tromp, Vikram Puri
2.1 Introduction 22
2.2 Literature Review of Training with Medical VR 23
2.3 Methodology of this Study 24
2.4 Results 26
2.5 Discussion 29
References 30
3 Building Empathy in Young Children using Augmented Reality: A Case Study in Malaysia 35
N.Zamin, F.A.Khairuddin, D.R.A.Rambli, E.N.M.Ibrahim, M.S.A.Soobni
3.1 Introduction 36
3.2 Motivations 36
3.3 Literature Review 36
3.4 Proposed Approach 38
3.5 Results and Discussions 38
3.6 Conclusions 41
References 41
4 Effectiveness of Virtual Reality Mock Interview Training 43
J. Garcia, J. Tromp, H. Seaton
4.1 Introduction 44
4.2 Virtual Reality Training Literature Review 44
4.3 Methodology 45
4.3.1 Participants 45
4.3.2 Materials 46
4.3.3 Procedure 47
4.4 Results 47
4.5 Disscussion 48
4.6 Conclusions 49
References 50
5 Augmenting Dental Care: A Current Perspective 52
Anand Nayyar, Gia Nhu Nguyen
5.1 Introduction 51
5.1.1 Origin of Augmented Reality 52
5.1.2 History of Augmented Reality 53
5.2 Augmented Reality Technology in Medical Technology 53
5.3 Existing Technologies in Medical/Healthcare Technology 55
5.4 Augmenting Dental Care-AR Technologies assisting Dentists for Dental Care 55
5.4.1 Augmented Reality Technologies in Oral and Maxillofacial Surgery 56
5.4.2 Augmented Reality Technologies in Dental Implant Surgery 58
5.4.3 Augmented Reality Technologies in Orthognathic Surgery 59
5.4.4 Augmented Reality Apps in Dental Applications 61
5.5 Augmented Reality in Dental Education 61
5.6 Augmented Reality based Education Technologies for Dentistry 62
5.6.1 DentSim 62
5.6.2 The Virtual Dental Patient: System for Virtual Teeth Drilling 63
5.6.3 Mobile AR Systems for Dental Morphology Learning 64
5.6.4 Periosim 64
5.7 Conclusion 65
References 65
6 Review of Virtual Reality Evaluation Methods and Psychophysiological Measurement Tools 69
M.A. Munoz, J.G. Tromp, Cai Zhushun
6.1 Science Can Help Inform Virtual Reality Development 70
6.1.1 Objectives of Evaluations 71
6.1.2 Test Often and Test Early 73
6.1.3 Testing Options in the Early Pre-Prototype Phase 77
6.2 Virtual Reality Can Help Inform Psychology and Science 78
6.3 Types of Psychophysiological Measures and Tools 79
6.3.1 Electrodermal Activity 79
6.3.2 Cardiovascular activity 79
6.3.3 Muscular Activity: Facial Expressions 80
6.3.4 Electrical brain activity: Electroencephalography 81
6.4 Outcome of the Evaluation 82
6.5 Conclusions 83
References 83
Part II Artificial Intelligence Technologies and Applications for Health and Medicine
7 AI Technologies for Mobile Health of Stroke Monitoring & Rehabilitation Robotics Control 89
B.M. Elbagoury, M.B.H.B. Shalhoub, M.I. Roushdy, Thomas Schrader
7.1 Introduction 90
7.2 Research Chapter Objectives 92
7.3 Literature Review 92
7.3.1 Pervasive Computing and Mobile Health Technologies 92
7.3.2 Rehabilitation Robotics for Stroke Patients 93
7.4 Description of the Research Telemedicine Platform 94
7.4.1 A State of the Art Telemedicine Robot Rehabilitation System 94
7.4.2 Wireless telemedicine module with robot 96
7.4.3 Wireless intelligence sensor network extract user’s biofeedback signal 96
7.5 A proposed intelligent adaptive behavior control to rehabilitation robotics 96
7.6 Materials and Methods 98
7.7 Conclusion Summary: Artificial Intelligence Technologies 98
References 100
8 Artificial Intelligence for Smart Cancer Diagnosis 103
M.H.B. Shalhoub, Naif M. Hassan Bin Shalhoub, Bassant M. Elbagoury, Abdel-Badeeh M. Salem
8.1 Introduction 104
8.2 Background and Related work 105
8.2.1 De-noising methods 105
8.2.2 Image Segmentation Overview 106
8.3 Proposed System Architecture 107
8.4 Telemedicine System Modules 109
8.4.1 Image Compression 109
8.4.2 Image Enhancement and Region of Interest Segmentation 110
8.5 Results and discussion 113
8.6 Conclusion and Future Work 114
References 114
9 Mobile Doctor Brain AI App: Artificial Intelligence for IoT HealthCare 117
Bassant M.Elbagoury, Ahmed A.Bakr, Mohamed Roushdy,
9.4 Proposed Artificial Intelligence Techniques for New AI IoT Health-Care Solutions for Stroke Monitoring 122
9.4.1 Support vector machine (SVM) 122
9.4.2 Case-based Reasoning 125
9.4.3 Particle Swarm Intelligence and ARX Model for Stroke Motion Estimation and Optimization 126
9.5 Conclusion 126
References 126
10 An Artificial Intelligence Mobile Cloud Computing Tool 129
M. Hassan Bin Shalhoub, Mohammed H. Bin Shalhoub, Mariam Marzouq Al-Otaibi, Bassant M. Elbagoury
10.1 Introduction 130
10.2 Background and State-of-the-Art 130
10.3 Development and Proposing a New Intelligent case-based Reasoning Decision Engine for Cacer Diagnosis 131
10.4 Experimental Results of The Proposed System 132
10.5 Conclusion 133
References 133
11 Advanced Intelligent Robot Control Interfaces for The VR Simulation 137
Gal IonelAlexandru, Vladareanu Luige and Shuang Cang
11.1 Introduction 138
11.2 Proposed Mechanical Structure 138
11.3 Unit 3D Integration 139
11.4 Results 148
11.5 Conclusion 150
References 150
12 Analysis of Telemedicine Technologies 153
Vikram Puri, Jolanda G Tromp, Noell C.L. Leroy, Chung Le Van, Nhu Gia Nguyen
12.1 Introduction 154
12.2 Literature Review 154
12.3 Architecture of Telemedicine Technologies 155
12.4 Enabling Technologies for Telemedicine 156
12.4.1 Telehealth for Congestive Heart Failure 156
12.4.2 Telemedicine for the Veterans 157
12.4.3 Tele-ICU (Intensive Care Unit) 157
12.4.4 Helping Patients Adhere to Medication Regimes 158
12.4.5 eReferral - reduces consultation time 158
12.5 Conclusion 159
References 159
Part III Robotics Technologies and Applications for Health and Medicine
13 Critical Position using Environment Model Applied onWalking Robots 165
M. Migdalovici, L. Vladareanu, N. Pop, H. Yu, M. Iliescu, V. Vladareanu, D. Baran, G. Vladeanu
13.1 Introduction 166
13.2 On the Environment’s Mathematical Model 166
13.3 Physical and Mathematical Models of The Walking Robot Leg 169
13.4 On Critical Positions of 3D Walking Robots 171
13.5 Mathematical model of beam without damping 173
13.6 Mathematical Model of Beam with Viscous Damping 175
13.7 Conclusion 175
References 176
14 The Walking Robot Equilibrium Recovery Applied on The NAO Robot 179
N. Pop, L. Vladareanu, H.Wang, M. Ungureanu, M. Migdalovici, V. Vladareanu, Y. Feng, M. Lin, E. P. Mastan and I. El Emary
14.1 Introduction 180
14.2 The Choice of the Model 180
14.3 Mathematical Modeling of Twolink Biped Walking Robot 181
14.4 Linear Control Design 182
14.4.1 Linear Quadratic Regulator 183
14.4.2 Numerical Results using MATLAB 184
14.5 Results and Discussion 187
14.6 Conclusions 188
References 188
15 Development of A Robotic Teaching Aid for Disabled Children in Malaysia 191
N.Zamin, N.I. Arshad, N. Rafiey and A.S. Hashim
15.1 Introduction 192
15.2 Case Study - Autism 192
15.3 Movitations 192
15.4 Proposed Approach 193
15.5 Results and Discussions 195
15.6 Robotic Intervention Enhance Autistic Students’ Engagement, Interaction and Focus 197
15.7 Conclusion 200
References 200
16 Training System Design of Lower Limb Rehabilitation Robot based on Virtual Reality 203
H. Wang, M. Lin, Z. Jin, X. Wang, J. Niu, H. Yu, L. Zhang, L. Vladareanu
16.1 Introduction 204
16.2 Application Device 204
16.2.1 Lower Limb Rehabilitation Robot 204
16.2.2 Necessary Sensor Element 205
16.3 Trajectory Planning and Smooth Motion 206
16.3.1 Design of Training Velocity and Acceleration with Linear Path 206
16.3.2 Design of Training Velocity and Acceleration with Circle Path 208
16.3.3 Design of Training Velocity and Acceleration with Arbitrary Trajectory 209
16.3.4 The Analysis of Ambiguous Points 209
16.3.5 The Simulation of Training Velocity and Acceleration in the Planning Trajectory 209
16.4 Virtual Reality Training System 212
16.4.1 Design of Intention Judgment of Patients 213
16.4.2 Design of Adapting Training Posture Function 215
16.4.3 Interaction Control Strategy 215
16.5 Virtual Reality Software Design 216
16.5.1 Virtual Scene Build 216
16.5.2 Game Function Design 217
16.6 Virtual Reality Training Experiment 219
16.6.1 Model Synchronization Test 219
16.6.2 Feedback Terrains Test 219
16.7 Conclusion 220
References 220
Part IV Internet of Things Technologies and Applications for Health And Medicine
17 Automation of Appliances Using Electroencephalography 225
Shivam Kolhe, Dhaval Khemani, Chintan Bhatt, and Nilesh Dubey
17.1 Introduction 226
17.2 Background, History and Future Aspects 226
17.3 Brain with Its Main Parts and Their Functions 227
17.3.1 Central Nervous System 228
17.3.2 Peripheral Nervous System 229
17.3.3 How are The Brain Signals Generated 230
17.3.4 What is Neuron Synapse? 232
17.4 Working of BCI 233
17.4.1 Types of Waves Generated and Detected by Brain 234
17.4.2 How to Perform Electroencephalogram 236
17.4.3 How to Take Measurements of the Head 237
17.4.4 How are EEG Signals Recorded 238
17.4.5 Methods to Display EEG on Screen 239
17.4.6 Eye Blink EEG Patterns 240
17.5 BCI Classes 241
17.5.1 Applications of BCI 242
17.5.2 Challenges BCI is facing 242
17.6 Conclusion 243
References 243
18 Designing a Beautiful Life for Indian Blind Peoples: A Smart Stick 245
Aatrey Vyas, Dhaval Bhimani, Smit Patel, Hardik Mandora, Chintan Bhatt
18.1 Introduction 246
18.2 Internet of Things 246
18.3 Background 247
18.4 Purpose Approach 248
18.4.1 Ultrasonic Sensor 248
18.4.2 NodeMCU 249
18.4.3 Global positioning system (GPS) 249
18.4.4 Buzzer 250
18.4.5 Flow Diagram 251
18.5 Implementation 251
18.6 Advantages and Disadvantages 256
18.7 Conclusion 257
References 258
19 Smart Home: Personal Assistant And Baby Monitoring System 259
Shivam Kolhe, Sonia Nagpal, Priya Makwana, Chintan Bhatt
19.1 Introduction 260
19.2 Background 261
19.3 Proposed Design and Implementation 261
19.3.1 Smart Home Personal Assistant 262
19.3.2 Baby Monitoring System 265
19.4 Online Energy Meter 268
19.5 Sensors used and Their Working 269
19.5.1 Temperature Sensor 269
19.5.2 Soil Moisture Sensor 270
19.5.3 PIR (Passive InfraRed) Sensor 272
19.6 Conclusion 283
References 284