Principles and Applications of FermentationTechnology
Buy Rights Online Buy Rights

Rights Contact Login For More Details

  • Wiley

More About This Title Principles and Applications of FermentationTechnology

English

The book covers all aspects of fermentation technology such as principles, reaction kinetics, scaling up of processes, and applications.

The 20 chapters written by subject matter experts are divided into two parts: Principles and Applications. In the first part subjects covered include:

  • Modelling and kinetics of fermentation technology
  • Sterilization techniques used in fermentation processes
  • Design and types of bioreactors used in fermentation technology
  • Recent advances and future prospect of fermentation technology

The second part subjects covered include:

  • Lactic acid and ethanol production using fermentation technology
  • Various industrial value-added product biosynthesis using fermentation technology
  • Microbial cyp450 production and its industrial application
  • Polyunsaturated fatty acid production through solid state fermentation
  • Application of oleaginous yeast for lignocellulosic biomass based single cell oil production
  • Utilization of micro-algal biomass for bioethanol production
  • Poly-lactide production from lactic acid through fermentation technology
  • Bacterial cellulose and its potential impact on industrial applications

English

Arindam Kuila is an Assistant Professor at the Department of Bioscience & Biotechnology, Banasthali University, Rajasthan. He obtained his PhD from the Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, India in 2013. He is the co-editor of "Lignocellulosic Biomass Production and Industrial Applications" (Wiley-Scrivener 2017), co-author of at least 11 peer-reviewed journals papers and 5 patents.

Vinay Sharma is Dean, Faculty of Science & Technology and Chair, Department of Bioscience & Biotechnology at Banasthali University, India. He has over 30 years of teaching and research experience and has published more than 250 research papers (including 31 as conference proceedings/ book chapters). He has also authored/edited 6 books including "Lignocellulosic Biomass Production and Industrial Applications" (Wiley-Scrivener 2017).

English

Part I: Principles of Fermentation Technology 1

1. Fermentation Technology: Current Status and Future Prospects 3
Ritika Joshi, Vinay Sharma, and Arindam Kuila

1.1. Introduction 3

1.2. Types of Fermentation Processes 4

1.2.1. Solid-state Fermentation 4

1.2.2. Submerged Fermentation 5

1.2.2.1. Batch Cultivation 5

1.2.2.2. Substrates Used for Fermentation 5

1.3. Enzymes 6

1.3.1. Bacterial Enzymes 6

1.3.2. Fungal Enzymes 6

1.4. Antibiotics 7

1.5. Fed-Batch Cultivation 8

1.6. Application of SSF 9

1.6.1. Enzyme Production 9

1.6.2. Organic Acids 10

1.6.3. Secondary Metabolites 10

1.6.4. Antibiotic 10

1.6.5. Biofuel 10

1.6.6. Biocontrol Agents 11

1.6.7. Vitamin 11

1.7. Future Perspectives 11

References 12

2. Modeling and Kinetics of Fermentation Technology 15
Biva Ghosh, Debalina Bhattacharya, and Mainak Mukhopadhyay

2.1. Introduction 16

2.2. Modeling 17

2.2.1. Importance of Modeling 18

2.2.2. Components of Modeling 20

2.2.2.1. Control Volume 20

2.2.2.2. Variables 22

2.2.2.3. Parameters 22

2.2.2.4. Mathematical Model 22

2.2.2.5. Automatization 23

2.3. Kinetics of Modeling 26

2.3.1. Thermodynamic 27

2.3.2. Phenomenological 27

2.3.3. Kinetic 27

2.3.3.1. Volumetric Rate and Specific Rate 28

2.3.3.2. Rate Expression for Microbial Culture 31

2.4. Conclusion 41

References 41

3. Different Sterilization Techniques used in Fermentation Processes 45
Shivani Sharma, Arindam Kuila, and Vinay Sharma

3.1. Introduction 45

3.2. Rate of Microbial Death 46

3.3. How do Sterilants Work? 47

3.4. Types of Sterilization 47

3.4.1. Heat 48

3.4.2. Pressure 48

3.4.3. Radiation 48

3.4.4. Filtration 49

3.4.5. Steam 49

3.5. Sterilization of the Culture Media 49

3.5.1. Batch Sterilization 49

3.5.2. Continuous Sterilization 50

3.6. Sterilization of the Additives 51

3.7. Sterilization of the Fermenter Vessel 51

3.8. Filter Sterilization 51

3.8.1. Diffusion 51

3.8.2. Inertial Impaction 51

3.8.3. Electrostatic Attraction 52

3.8.4. Interception 52

3.9. Sterilization of Air 52

References 52

4. Advances in Fermentation Technology: Principle and their Relevant Applications 53
Monika Choudhary, Sunanda Joshi, Sameer Suresh Bhagyawant, and Nidhi Srivastava

4.1. Introduction 53

4.2. Basic Principle of Fermentation 54

4.3. Biochemical Process 56

4.4. Fermentation Methodology 58

4.5. Biochemical Mechanism 59

4.6. Fermentation and its Industrial Applications 60

4.7. Relevance of Fermentation 61

4.8. Conclusion 62

References 62

5. Fermentation Technology Prospecting on Bioreactors/Fermenters: Design and Types 65
Gauri Singhal, Vartika Verma, Sameer Suresh Bhagyawant, and Nidhi Srivastava

5.1. Introduction 65

5.2. Bioreactor and Fermenter 67

5.3. Types of Fermenter and Bioreactor 68

5.3.1. Laboratory Scale Fermenters 68

5.3.2. Pilot Scale Fermenters 69

5.3.3. Industrial Scale Fermenter 69

5.4. Design and Operation 69

5.4.1. Fermenter Vessel 72

5.4.2. Heating and Cooling Apparatus 72

5.4.3. Sealing Assembly 73

5.4.4. Baffles 73

5.4.5. Impeller 73

5.4.6. Sparger 74

5.4.7. Feed Ports 74

5.4.8. Foam Control 74

5.4.9. Valves 74

5.4.10. Safety Valves 75

5.5. Classification of Bioreactor 75

5.6. Types of Fermenter/Bioreactor 75

5.6.1. Stirred Tank Fermentor 75

5.6.2. Airlift Fermentor 76

5.6.3. Bubble Column Fermentor 78

5.6.4. Packed Bed Reactors 78

5.6.5. Fluidized Bed Bioreactor 80

5.6.6. Photobioreactor 80

5.6.7. Membrane Bioreactor 81

5.7. Conclusion 82

References 82

Part II: Applications of Fermentation Technology 85

6. Lactic Acid and Ethanol: Promising Bio-Based Chemicals from Fermentation 87
Andrea Komesu, Johnatt Oliveira, LUIZA Helena da Silva Martins, Maria Regina Wolf Maciel, Rubens Maciel Filho

6.1. Introduction 88

6.2. Generalities about LA and Ethanol 89

6.3. Fermentation Methods to LA and Ethanol Production 93

6.4. Potential Raw Materials for Biotechnology Production 95

6.4.1. Potential Raw Materials for LA Production 95

6.4.2. Potential Raw Materials for Bioethanol Production 98

6.5. Challenges in LA and Ethanol Production 103

6.6. Integrated Ethanol and LA Production 105

6.7. Concluding Remarks 108

References 109

7. Application of Fermentation Strategies for Improved Laccase Production: Recent Developments 117
Priyanka Ghosh, Arpan Das, and Uma Ghosh

7.1. Introduction 117

7.1.1. What is Laccase? 119

7.2. Major Factors Influencing Fermentation Processes for Laccase Production 120

7.2.1. Influence of Carbon Source 120

7.2.2. Influence of Nitrogen Source 122

7.2.3. Influence of Temperature 123

7.2.4. Influence of pH 124

7.2.5. Influence of Inducer 124

7.3. Type of Cultivation 126

7.3.1. Submerged Fermentation 126

7.3.2. Solid-State Fermentation 126

7.4. Biotechnological Application of Laccases 129

7.4.1. Food Industry 129

7.4.2. Textile Industries 131

7.4.3. Paper Industry 131

7.4.4. Bioremediation 131

7.4.5. Pharmaceutical Industry 132

7.5. Conclusion 132

References 133

8. Use of Fermentation Technology for Value Added Industrial Research 141
Biva Ghosh, Debalina Bhattacharya, and Mainak Mukhopadhyay

8.1. Introduction 142

8.2. Fermentation 143

8.3. Biofuel Production 144

8.3.1. Biohydrogen 144

8.3.2. Biodiesel 145

8.3.3. Bioethanol 146

8.4. 1, 3-Propanediol 146

8.5. Lactic Acid 147

8.6. Polyhydroxyalkanoates 149

8.7. Exopolysaccharides 150

8.8. Succinic Acid 151

8.9. Flavoring and Fragrance Substances 152

8.10. Hormones and Enzymes 153

8.11. Conclusion 156

References 157

9. Valorization of Lignin: Emerging Technologies and Limitations in Biorefineries 163
Gourav Dhiman, Nadeem Akhtar, and Gunjan Mukherjee

9.1. Introduction 164

9.2. Lignocellulosic Material: Focus on Second Generation Bio-fuel 165

9.3. Composition and Biosynthesis of Lignin 166

9.3.1. Structure Analysis of Lignin 167

9.3.2. Degradative Analytical Techniques (Oxidation, Reduction, Hydrolysis, and Acidolysis) 167

9.3.3. Non-Degradative Analytical Techniques (Thioglycolic Acid–TGA and Acetyl Bromide–ACBR) 168

9.4. Bioengineering of Lignin 168

9.4.1. Reducing the Recalcitrance Nature of Biomass 169

9.4.2. Improving Lignin Content for Production of High Energy Feedstock 170

9.5. Lignin Separation and Recovery 171

9.5.1. Chemical- and Physical-Based Lignin Separations 171

9.5.2. Biological Degradation of Lignin 172

9.6. Lignin-Based Materials and Polymers 172

9.7. Lignin-Based Fuels and Chemicals 173

9.8. Concluding Remarks and Future Prospects 175

References 175

10. Exploring the Fermentation Technology for Biocatalysts Production 181
Ronivaldo Rodrigues da Silva

10.1. Introduction 181

10.2. Bioprocesses and Micro-Organism in Biotechnology 181

10.3. Biotechnology Fermentation 182

10.3.1. Submerged Fermentation 183

10.3.2. Solid State Fermentation 183

10.4. Production of Enzymes 183

References 186

11. Microbial CYP450: An Insight into Its Molecular/Catalytic Mechanism, Production and Industrial Application 189
Abhilek Kumar Nautiyal, Arijit Jana, Sourya Bhattacharya, Tripti Sharma, Neha Bansal, Sree Sai Ogetiammini, Debashish Ghosh, Saugata Hazra, Diptarka Dasgupta

11.1. Introduction 190

11.2. Microbial Cytochrome P450 192

11.3. Extent of P450s in Microbial Genome 193

11.4. Structure, Function and Catalytic Cycle 194

11.5. Strain Engineering for Improved Activity 198

11.6. Producion Strategies of CYP450 204

11.6.1. Bioreactor Consideration 204

11.6.2. Protein Recovery 204

11.7. Applications 205

11.7.1. Emvironmental Application 206

11.7.2. Medical Application 207

11.8. Conclusion 208

References 209

12. Production of Polyunsaturated Fatty Acids by Solid State Fermentation 217
Bruno Carlesso Aita, Stéfani Segato Spannemberg, Raquel Cristine Kuhn, Marcio Antonio Mazutti

12.1. Introduction 217

12.2. PUFAs Production by SSF 220

12.3. Microorganisms Used for PUFAs Production by SSF 222

12.4. Main Process Parameters 223

12.4.1. Moisture Content of the Substrate 223

12.4.2. Temperature 228

12.4.3. Substrate 229

12.4.4. Carbon to Nitrogen (C/N) Ratio 230

12.4.5. pH 230

12.4.6. Incubation Time 231

12.5. Bioreactors 231

12.6. Extraction of Microbial Oil 232

12.7. Concluding Remarks 233

References 234

13. Solid State Fermentation – A Stimulating Process for Valorization of Lignocellulosic Feedstocks to Biofuel 239
Arpan Das and Priyanka Ghosh

13.1. Introduction 240

13.2. Potential of Lignocellulosic Biomass for Biofuel Production 242

13.3. Structure of Lignocellulose 243

13.3.1. Cellulose 244

13.3.2. Hemicellulose 245

13.3.3. Lignin 245

13.4. Biomass Recalcitrance 246

13.5. Pre-treatment of Lignocellulosic Biomass 246

13.5.1. Chemical Pre-treatment 247

13.5.2. Physical Pre-treatment 248

13.5.3. Biological Pre-treatment 248

13.5.4. Inhibitors Released During Pre-treatment 249

13.6. Hydrolysis 249

13.7. Limitations of Enzymatic Hydrolysis 250

13.8. Fermentation 251

13.8.1. Separate Hydrolysis and Fermentation (SHF) 252

13.8.2. Simultaneous Saccharification and Fermentation (SSF) 252

13.8.3. Consolidated Bioprocessing 254

13.9. Concluding Remarks 255

References 256

14. Oleaginous Yeasts: Lignocellulosic Biomass Derived Single Cell Oil as Biofuel Feedstock 263
Neha Bansal, Mahesh B Khot, Arijit Jana, Abhilek K Nautiyal, Tripti Sharma, Diptarka Dasgupta, Swati Mohapatra, Sanoj Kumar Yadav, Saugata Hazra, Debashish Ghosh

14.1. Introduction 264

14.2. Oleaginous Yeasts: A Brief Account 265

14.3. Lignocellulosic Biomass and its Deconstruction 267

14.4. Biochemistry of Lipid Biosynthesis 276

14.5. Genetic Modification for Enhancing Lipid Yield 278

14.5.1. Over-expression of Key Metabolic Genes 279

14.5.2. Blocking Competing Pathways 282

14.5.3. Challenges in Genetic Engineering of Yeast 282

14.6. Fermentative Cultivation, Recovery of Yeast Lipids as SCO and Production of Biofuel 283

14.7. Characterization of Yeast SCO: Implications towards Biodiesel Properties 289

14.8. Concluding Remarks 294

References 294

15. Pre-treatment of Lignocellulose for the Production of Biofuels 309
Biva Ghosh, Debalina Bhattacharya, Mainak Mukhopadhyay

15.1. Introduction 309

15.2. Lignocellulose 311

15.3. Parameters Effecting the Hydrolysis of Lignocellulose 312

15.3.1. Crystallinity of Cellulose 312

15.3.2. Cellulose Degree of Polymerization 313

15.3.3. Effect of Accessible Surface Area 313

15.3.4. Encapsulation by Lignin 313

15.3.5. Hemicellulose Content 314

15.3.6. Porosity 314

15.4. Pre-treatment of lignocellulose 314

15.4.1. Physical Pre-treatment 315

15.4.1.1. Milling 315

15.4.1.2. Microwave 316

15.4.1.3. Ultrasound 317

15.4.1.4. Irradiation 317

15.4.1.5. Mechanical Extrusion 317

15.4.1.6. Pyrolysis 318

15.4.1.7. Pulse Electric Field (PEF) 319

15.4.2. Chemical Pre-treatment 319

15.4.2.1. Alkaline Pre-treatment 319

15.4.2.2. Dilute-acid Pre-treatment 320

15.4.2.3. Ionic Liquids 322

15.4.2.4. Deep Eutectic Solvents 322

15.4.2.5. Natural Deep Eutectic Solvents 323

15.4.2.6. Ozonolysis 323

15.4.2.7. Organosolv 324

15.4.3. Physicochemical Pre-treatment 325

15.4.3.1. Ammonia Fiber Expansion (AFEX) 325

15.4.3.2. Ammonia Recycled Percolation (ARP) and Soaking in Aqueous Ammonia 325

15.4.3.3. Hot Water Pre-treatment 326

15.4.3.4. Steam Explosion 327

15.4.3.5. SO2-Catalyzed Steam Explosion 328

15.4.3.6. Oxidation 328

15.4.3.7. Wet Oxidation 329

15.4.3.8. SPORL Treatment 329

15.4.3.9. Supercritical Fluid 329

15.4.4. Biological Pre-treatment 330

15.4.4.1. White-Rot Fungi 330

15.4.4.2. Brown-Rot Fungi 331

15.4.4.3. Soft-Rot Fungi 331

15.4.4.4. Bacteria and Actinomycetes 331

15.4.5. Other Pre-treatment Process 331

15.4.5.1. Hydrotrope Pre-treatment 331

15.4.5.2. Photocatalytic Pre-treatment 332

15.5. Case Studies of Biofuels 333

15.5.1. Ethanol production 333

15.5.2. Butanol 335

15.5.3. Biohydrogen 337

15.5.4. Biogas 338

15.6. Conclusion 340

Reference 341

16. Microalgal Biomass as an Alternative Source of Sugars for the Production of Bioethanol 351
Maria Eugenia Sanz Smachetti, Lara Sanchez Rizza, Camila Denise Coronel, Mauro Do Nascimento, and Leonardo Curatti

16.1. Overview 352

16.2. Aquatic Species as Alternative Feedstocks for Low-cost-sugars 353

16.2.1. Seaweed 353

16.2.1.1. Seaweed Biomass 353

16.2.1.2. Seaweed Cultivation 354

16.2.1.3. Seaweed as a Biofuels Feedstock 355

16.2.2. Microalgae 357

16.2.2.1. Microalgae Biomass as a Biofuel Feedstock 358

16.2.2.2. Microalgal Biomass Production Technology 362

16.2.2.3. Microalgae Productivity 364

16.2.2.4. Harvesting and Drying Algal Biomass 365

16.2.2.5. Microalgal Biomass Conversion into Biofuels 367

16.3. Environmental Sustainability of Microlgal-based Biofuels 375

16.4. Prospects for Commercialization of Microalgal-based Bioethanol 376

16.5. Conclusions and Perspectives 377

References 378

17. A Sustainable Process for Nutrient Enriched Fruit Juice Processing: An Enzymatic Venture 387
Debajyoti Kundu, Jagriti Singh, Mohan Das, Akanksha Rastogi, and Rintu Banerjee

17.1. Introduction 388

17.2. Conventional Methods for Juice Processing and Their Drawbacks 389

17.3. Enzyme Technology in Different Step of Juice Processing 390

17.3.1. Peeling and Extraction 391

17.3.2. Clarification 393

17.3.3. Debittering 395

17.4. Conclusion 396

References 396

18. Biotechnological Exploitation of Poly-Lactide Produced from Cost Effective Lactic Acid 401
Mohan Das, Debajyoti Kundu, Akanksha Rastogi, Jagriti Singh, and Rintu Banerjee

18.1. Introduction 402

18.2. Need for Ideal Substrates for Lactic Acid Production 403

18.3. Role of Microbes and Biochemical Pathways in Lactic Acid Production 405

18.4. Purification of Lactic Acid 406

18.5. Methods of Synthesis of PLA 408

18.5.1. Direct poly condensation 408

18.5.2. Ring opening poly condensation 409

18.6. Applications of PLA 411

18.7. Conclusion 413

References 413

19. A New Perspective on Fermented Protein Rich Food and Its Health Benefits 417
Jagriti Singh, Akanksha Rastogi, Debajyoti Kundu, Mohan Das and Rintu Banerjee

19.1. Introduction 418

19.2. Sources of Fermented Protein 420

19.3. Protein in Biological System 420

19.4. Bioabsorbability of Protein 423

19.4.1. Absorption of Peptides and Amino Acids 423

19.5. Fermented Protein-Rich Food Products 424

19.5.1. Soyabean (Gycine max) 424

19.5.2. Distillers DDGS 426

19.5.3. Tempe 426

19.5.4. Red Bean (Phaseolus vulgaris) 427

19.5.5. Fermented Peanuts (Arachis hypogae) 428

19.5.6. Sufu 428

19.5.7. Kefir 429

19.5.8. Fermented Whey Beverage 430

19.5.9. Salami 431

19.6. Conclusion 431

References 432

20. An Understanding of Bacterial Cellulose and Its Potential Impact on Industrial Applications 437
Akanksha Rastogi, Jagriti Singh, Mohan Das, Debajyoti Kundu, and Rintu Banerjee

20.1. Introduction 438

20.2. Cultivation Conditions for Production of Bacterial Cellulose 439

20.2.1. Fermentation Process 439

20.2.2. Composition of Culture Media 440

20.2.2.1. Carbon Source 440

20.2.2.2. pH for Bacterial Cellulose Production 440

20.2.2.3. Temperature for BC Production 441

20.2.2.4. Dissolved Oxygen on BC Production 441

20.3. Bioreactor System for Bacterial Cellulose 441

20.3.1. Stirred Tank Reactor 442

20.3.2. Trickling Bed Reactor 442

20.3.3. Airlift Bioreactors 442

20.3.4. Aerosol Bioreactor 443

20.3.5. Rotary Bioreactor 443

20.3.6. Horizontal Lift Reactor 444

20.3.7. Other Type of Bioreactor 444

20.4. Plant Cellulose vs. Bacterial Cellulose 444

20.4.1. Morphology 446

20.4.2. Crystallinity 447

20.4.3. Degree of Polymerization 447

20.4.4. Thermal Properties 447

20.4.5. Mechanical Properties 447

20.4.6. Water Absorption Properties 448

20.4.7. Optical Properties 448

20.5. Compositional View of Bacterial Cellulose 448

20.6. Molecular biology of Bacterial Cellulose 449

20.7. Importance of Genetically Modified Bacteria in Bacterial Cellulose Production 450

20.8. Applications of Bacterial Cellulose in Different Industrial Sector 451

20.8.1. Skin and Wound Healing 451

20.8.2. Bacterial Cellulose Composites 452

20.8.3. Artificial Blood Vessels 452

20.8.4. In Paper Industry 452

20.8.5. In Food Industry 453

20.8.6. Applications of Bacterial Cellulose in Other Fields 453

20.9. Conclusion 454

References 454

Index 000

loading