Functional Organic and Hybrid NanostructuredMaterials - Fabrication, Properties, andApplications
Buy Rights Online Buy Rights

Rights Contact Login For More Details

  • Wiley

More About This Title Functional Organic and Hybrid NanostructuredMaterials - Fabrication, Properties, andApplications

English

The first book to explore the potential of tunable functionalities in organic and hybrid nanostructured materials in a unified manner.
The highly experienced editor and a team of leading experts review the promising and enabling aspects of this exciting materials class, covering the design, synthesis and/or fabrication, properties and applications. The broad topical scope includes organic polymers, liquid crystals, gels, stimuli-responsive surfaces, hybrid membranes, metallic, semiconducting and carbon nanomaterials, thermoelectric materials, metal-organic frameworks, luminescent and photochromic materials, and chiral and self-healing materials.
For materials scientists, nanotechnologists as well as organic, inorganic, solid state and polymer chemists.

English

Quan Li is Director of Organic Synthesis and Advanced Materials Laboratory at Liquid Crystal Institute of Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He, as a Principal Investigator and Project Director, has directed the cutting edge research projects funded by U.S. Air Force Office of Scientific Research, U.S. Air Force Research Laboratory, U.S. Army Research Office, U.S. Department of Defense Multidisciplinary University Research Initiative, U.S. National Science Foundation, U.S. National Aeronautics and Space Administration, U.S. Department of Energy, Ohio Board of Regents under Its Research Challenge Program, Ohio Third Frontier, Samsung Electronics, etc. He received his Ph.D. in Organic Chemistry from the Chinese Academy of Sciences (CAS) in Shanghai, where he was promoted to the youngest Full Professor of Organic Chemistry and Medicinal Chemistry in February of 1998. He was a recipient of CAS One-Hundred Talents Award (BeiRenJiHua) in 1999. He was Alexander von Humboldt Fellow in Germany. He has won Kent State University Outstanding Research and Scholarship Award. He has also been honored as Guest Professor and Chair Professor by several Universities.

English

Preface xiii

1 Controllable Self-Assembly of One-Dimensional Nanocrystals 1
Shaoyi Zhang, Yang Yang, and Zhihong Nie

1.1 Introduction 1

1.2 Assembly Strategies 2

1.2.1 Templated Assembly 2

1.2.1.1 Geometrically Patterned Template 2

1.2.1.2 Chemically Patterned Template 4

1.2.2 Field-Driven Assembly 7

1.2.2.1 Assembly under Electric Field 7

1.2.2.2 Magnetic Field 10

1.2.2.3 Flow Field 12

1.2.3 Assembly at Interfaces and Surface 13

1.2.3.1 Liquid–Liquid Interface 14

1.2.3.2 Liquid–Air Interface 15

1.2.3.3 Evaporation-Mediated Assembly on Solid Surface 17

1.2.4 Ligand-Guided Assembly 19

1.2.4.1 Small Molecules 19

1.2.4.2 Polymeric Species 21

1.2.4.3 Biomolecular Ligand 23

1.3 Properties and Applications 25

1.4 Perspectives and Challenges 28

References 29

2 Self-Assembled Graphene Nanostructures and Their Applications 39
Dingshan Yu, Zhongke Yuan, Xiaofen Xiao, and Quan Li

2.1 Introduction 39

2.2 State-of-the-Art Self-Assembly Strategies of Graphene Nanostructures 40

2.2.1 Langmuir–Blodgett (LB) Method 40

2.2.2 Layer-by-Layer (LbL) Assembly Method 42

2.2.3 Flow-, Evaporation-, and Interface-Induced Self-Assembly 43

2.2.4 Template-Directed Self-Assembly and Hydrothermal Processes 45

2.2.5 Spin- and Space-Confinement Self-Assembly 46

2.2.6 Composites with Carbon Nanomaterials 49

2.2.7 Composites with Polymers 51

2.2.8 Composites with Metal or Metal Compounds 53

2.3 Applications of Self-Assembled Graphene Nanostructures 57

2.3.1 Optoelectronics and Photocatalysis 57

2.3.2 Electrochemical Energy Storage 59

2.3.3 Electrocatalysis 60

2.4 Outlook 61

References 62

3 Photochromic Organic and Hybrid Self-Organized Nanostructured Materials: From Design toApplications 75
Ling Wang and Quan Li

3.1 Introduction 75

3.2 Photochromic Organic and Hybrid Nanoparticles 76

3.2.1 Noble Metal Nanoparticles with Photochromic Molecules 77

3.2.2 Fluorescent Nanoparticles with Photochromic Molecules 81

3.2.3 Mesoporous Silica Nanoparticles with Photochromic Molecules 83

3.3 Photochromic Carbon-Based Nanomaterials 87

3.3.1 Carbon Nanotubes with Photochromic Molecules 87

3.3.2 Graphene Derivatives with Photochromic Molecules 90

3.4 Photochromic Chiral Liquid-Crystalline Nanostructured Materials 91

3.4.1 Cholesteric Liquid-Crystalline Superstructures 93

3.4.2 Liquid-Crystalline Blue Phase Superstructures 97

3.4.3 Liquid-Crystalline Microshells and Microdroplets 98

3.5 Summary and Perspective 100

Acknowledgments 101

References 101

4 Photoresponsive Host–Guest Nanostructured Supramolecular Systems 113
Da-Hui Qu,Wen-ZhiWang, and He Tian

4.1 Introduction 113

4.2 Photoresponsive Supramolecular Polymers andTheir Assemblies 114

4.2.1 Supramolecular Interactions in the Main Chain 115

4.2.2 Supramolecular Interactions in the Side Chain 133

4.2.3 Supramolecular Complexations as Cross-Linkers between Branched Polymer Chains 139

4.2.4 Photoresponsive Supramolecular Micelles, Vesicles, and Other Assemblies 140

4.3 Photoresponsive Host–Guest Systems Immobilized on Surfaces 148

4.4 Conclusions and Prospects 157

Acknowledgments 157

Abbreviations 157

References 158

5 ;;-Electronic Ion-Pairing Assemblies Providing Nanostructured Materials 165
Yohei Haketa and Hiromitsu Maeda

5.1 Introduction 165

5.2 Nanostructures Based on Self-Assembling π-Electronic Charged Species 167

5.2.1 Formation of Nanofibers 167

5.2.2 Formation of Nanotubes and Others 172

5.3 Ionic Liquid Crystals Based on π-Electronic Charged Species 175

5.4 Assemblies Based on Genuine π-Electronic Ions 177

5.5 Ion-Pairing Assemblies Based on π-Electronic Anion-Responsive Molecules 184

5.5.1 Solid-State Assemblies Based on π-Electronic Anion-Responsive Molecules 184

5.5.2 Solid-State Assemblies of Receptor–Anion Complexes 186

5.5.3 Ion-Pairing Supramolecular Gels 186

5.5.4 Ion-Pairing Liquid Crystals Based on π-Electronic Charged Species 188

5.6 Conclusion 193

References 194

6 Stimuli-Responsive Nanostructured Surfaces for Biomedical Applications 203
Bárbara Santos Gomes and Paula M. Mendes

6.1 Introduction 203

6.2 Thin-Film Formation by Assembly on Surfaces 204

6.3 Lithographic Techniques 206

6.4 Electrically Driven Nanostructured Responsive Surfaces 209

6.5 Photodriven Nanostructured Responsive Surfaces 216

6.6 Thermo-Driven Nanostructured Responsive Surfaces 222

6.7 Chemically Controlled Nanostructured Surfaces 227

6.8 Concluding Remarks and Perspectives 234

References 235

7 Stimuli-Directed Self-Organized One-Dimensional Organic Semiconducting Nanostructures forOptoelectronic Applications 247
A.S. Achalkumar,Manoj Mathews, and Quan Li

7.1 Introduction to Discotic Liquid Crystals 247

7.2 Application of Columnar Phases in Organic Electronics 250

7.3 Alignment of Col LC Phases through Different Stimuli 253

7.3.1 Alignment Control by Molecular Design 255

7.3.2 Alignment Control of Columnar Phase through Physical Methods 262

7.3.2.1 Surface Treatment 262

7.3.2.2 Langmuir–Blodgett (LB) Deposition 266

7.3.2.3 Application of Self-Assembled Monolayers 269

7.3.2.4 Application of Chemically Modified Surfaces and Dewetting 273

7.3.2.5 Application of Sacrificial Layer 276

7.3.2.6 Alignment in Nanopores and Nanogrooves 277

7.3.2.7 Zone Casting 281

7.3.2.8 Zone Melting 282

7.3.2.9 Dip Coating, Solvent Vapor Annealing, and Solvent-Induced Precipitation 283

7.3.2.10 Magnetic-Field-Induced Alignment 287

7.3.2.11 Electric-Field-Induced Alignment 288

7.3.2.12 Photoalignment by Infrared Irradiation 290

7.3.2.13 Other Alignment Techniques 291

7.4 Conclusions and Perspective 293

References 295

8 Stimuli-Directed Helical Axis Switching in Chiral Liquid Crystal Nanostructures 307
Rafael S. Zola and Quan Li

8.1 Introduction 307

8.2 Self-Organized Chiral Nematic LCs 308

8.3 Field-Induced Helical Axis Switching: Dielectric/Magnetic Torque and Flexoelectric Effect 311

8.4 Optically Driven Helical Axis Switching 319

8.5 Confinement Mediated Helical Axis Change 328

8.6 Helical Axis Switching in CLC Polymer Composites 339

8.7 Summary and Outlook 345

References 346

9 Electrically Driven Self-Organized Chiral Liquid-Crystalline Nanostructures: Organic Molecular Photonic Crystal with Tunable Bandgap 359
Suman K. Manna, Thomas F. George, and Guoqiang Li

9.1 Introduction 359

9.1.1 Photonic Crystal 359

9.1.2 Photonic Bandgap 359

9.1.3 Light Propagation in 1D Photonic Bandgap Medium 361

9.2 Self-Assembled Photonic Crystals 362

9.2.1 Opal Structure 363

9.2.2 Cholesteric Liquid Crystal 363

9.2.2.1 Liquid Crystal 364

9.2.2.2 Nonchiral Liquid-Crystalline Phase 364

9.2.2.3 Chiral Liquid-Crystalline Phase (Cholesteric) 365

9.3 Electric-Field-Induced, Self-Assembled, Tunable Photonic Crystals 366

9.3.1 Self-Assembled Tunable Opal 367

9.3.2 Electric-Field-Induced, Self-Assembled, Tunable CLC 367

9.3.3 Transverse-Electric-Field-Induced Tunable CLCs 368

9.3.4 Polymer-Stabilized Tunable CLCs 371

9.3.5 Lower Elastic Constant LC Host 373

9.3.6 Negative LC Host 374

9.4 Conclusions 377

Acknowledgments 378

References 378

10 Nanostructured Organic–Inorganic Hybrid Membranes for High-Temperature Proton ExchangeMembrane Fuel Cells 383
Jin Zhang and San Ping Jiang

10.1 Introduction 383

10.2 Nanostructured Nafion-Based Hybrid Membranes 386

10.2.1 Nafion Hybrid Membrane Based on Metal Oxides 387

10.2.1.1 Casting Method 388

10.2.1.2 In situ Sol–Gel Method 391

10.2.1.3 Liquid-Phase Deposition Method 393

10.2.2 Nafion Hybrid Membrane Based on Proton Conductors 394

10.3 Hydrocarbon Polymer-Based Hybrid Membranes 394

10.4 Nanostructured PBI-Based Hybrid Membranes 396

10.4.1 Addition of Non-proton Conductors 398

10.4.2 Conductive Inorganic Fillers 400

10.4.2.1 Functionalization of Inorganic Fillers 400

10.4.2.2 Proton-Conductor-Incorporated Inorganic Fillers 402

10.5 Alternative PA-Doped Hybrid Membranes 404

10.6 Conclusions and Outlook 405

Acknowledgment 408

References 408

11 Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems:Electronic Properties and Advanced Energy Conversion Functions 419
Ken Sakaushi

11.1 Introduction 419

11.2 Electronic Function Control in Two-Dimensional Organic and Hybrid Porous Frameworks 422

11.3 Electronic Functions in 2D Organic Frameworks and Applications 424

11.4 Electronic Functions in Two-Dimensional Hybrid Porous Frameworks and Applications 433

11.5 Concluding Remarks 437

Acknowledgments 439

References 439

12 Organic/Inorganic Hybrid Nanostructured Materials for Thermoelectric Energy Conversion 445
Yucheng Lan, XiaomingWang, ChundongWang, and Mona Zebarjadi

12.1 Introduction 445

12.1.1 Inorganic Thermoelectric Materials 447

12.1.2 Organic Thermoelectric Materials 449

12.1.3 HybridThermoelectric Nanostructured Composites 453

12.2 Organic/Inorganic Thermoelectric Nanostructured Materials 454

12.2.1 PEDOT Hybrid Nanocomposites 455

12.2.2 PANI Hybrid Nanostructured Composites 458

12.2.3 CNT/Polymer Nanostructured Composites 460

12.2.3.1 CNT/PVAc Composites 461

12.2.3.2 CNT/PANI Nanostructured Composites 462

12.2.3.3 CNT/PEDOT:PSS Nanostructured Composites 464

12.2.3.4 CNT/Bi2Te3 Nanostuctured Composites 465

12.2.3.5 Three-Component CNT Nanostructured Composites 465

12.2.4 Other Hybrid Nanostructured Composites 467

12.2.4.1 P3OT Hybrid Nanocomposites 467

12.2.4.2 PTH Hybrid Nanocomposites 468

12.2.4.3 PPy Hybrid Nanocomposites 468

12.2.4.4 PC Hybrid Nanocomposites 468

12.2.4.5 PHT Hybrid Nanocomposites 468

12.2.4.6 PPT Hybrid Nanocomposites 468

12.2.4.7 P3HT Hybrid Nanocomposites 468

12.2.4.8 PA Hybrid Nanocomposites 469

12.3 Surface-Transfer Doping of Organic/Inorganic Thermoelectric Nanocomposites 469

12.4 Outlook 472

Abbreviations 473

References 473

13 Hybrid Organic–Nitride Semiconductor Nanostructures for Biosensor Applications 485
Paul Bertani and Wu Lu

13.1 Introduction 485

13.2 AlGaN/GaN Functionality and Active Region 487

13.3 Device Fabrication 491

13.4 Au-Linking and Thiol Group Employment 492

13.5 Oxidation of Nitride Surfaces in Preparation for Functionalization 494

13.6 Silanization of Oxidized Nitride Surfaces 497

13.7 DNA Immobilization and Hybridization 500

13.8 Biotin–Streptavidin 504

13.9 ImmunoFETs 507

13.10 Summary and Outlook 511

References 512

14 Polymer–Nanomaterial Composites for Optoacoustic Conversion 519
Taehwa Lee, HyoungWon Baac, Jong G. Ok, and L. Jay Guo

14.1 Introduction 519

14.2 Optoacoustic Conversion in Nanomaterials 520

14.2.1 Fundamentals of Optoacoustic Generation 520

14.2.2 Heat Transfer from the Nanomaterial Absorber to the Surrounding Polymer 521

14.3 Polymer–Nanomaterial Composite for Optoacoustic Conversion 522

14.3.1 Polymer Materials with Light-Absorbing Carbon Fillers 522

14.3.1.1 Carbon Nanotube (CNT) Composite 523

14.3.1.2 Other Carbon-Based Composites 523

14.3.2 Metal-Based Polymer Composites 527

14.3.2.1 Polymer–Metal Nanoparticle Composites 528

14.3.2.2 Polymer–Metal Film Composites 529

14.3.3 Performance Comparison 531

14.4 Applications of Optoacoustic Conversion in Nanocomposites 531

14.4.1 Optoacoustic Generation of Focused Ultrasound for Therapeutic Applications 531

14.4.2 Optoacoustic Generation in Polymer Composites for Ultrasound Imaging 537

14.4.3 CNT–PDMS Composite for Real-Time Terahertz Detection 539

14.5 Outlook and Future Direction 541

14.5.1 New High-Efficiency Optoacoustic Composites with Mechanical Robustness 541

14.5.2 New Optoacoustic Applications 543

References 544

15 Functional Nanostructured Conjugated Polymers 547
Satoshi Matsushita, Benedict San Jose, and Kazuo Akagi

15.1 Introduction 547

15.1.1 Circularly Polarized Luminescence 547

15.1.2 CPL in Conjugated Polymers 547

15.1.3 CPL with High gem Using Selective Reflection Property of N∗-LCs 548

15.1.4 Dynamic Switching of CPL 549

15.1.5 Chirality Transfer and Chiral Transcription 549

15.1.6 Polyacetylenes 550

15.2 DiLCPAs with Blue and Green LPL 551

15.2.1 Liquid Crystallinity of diLCPAs 552

15.2.2 Linearly Polarized Luminescence of diLCPAs 553

15.3 Lyotropic N∗ diLCPAs with Green CPL 554

15.3.1 Liquid Crystallinity of diLCPAs 555

15.3.2 Circularly Polarized Luminescence of diLCPAs 557

15.4 Dynamic Switching of CPL by Selective Reflection through a Thermotropic N∗-LC 558

15.4.1 Preparation of N∗-LC Cells 559

15.4.2 Dynamic Switching of CPL 559

15.5 Liquid-Crystallinity-Enforced Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE 561

15.5.1 Liquid Crystallinity of MonoPAs 563

15.5.2 Chirality of MonoPAs 565

15.5.3 Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE 566

15.6 Conclusions and Outlook 567

Acknowledgments 568

References 569

16 Nanostructured Self-Organized Heliconical Nematic Liquid Crystals: Twist-Bend Nematic Phase 575
Hari K. Bisoyi and Quan Li

16.1 Introduction 575

16.1.1 Liquid Crystals 575

16.1.2 Twist-Bend Nematic (Ntb) Phase 578

16.2 Characterization of Ntb Phase 581

16.3 Ntb Phase in Different Classes of Liquid Crystal Compounds 583

16.3.1 Ntb Phase in a Bent-Core Compound 583

16.3.2 Ntb Phase in Dimers 585

16.3.2.1 Methylene-Linked Dimers 585

16.3.2.2 Ether-Linked Dimers 594

16.3.2.3 Imino-Linked Dimers 595

16.3.2.4 Other Dimers 597

16.3.3 Ntb Phase in Trimers 600

16.3.4 Ntb Phase in Tetramers 603

16.4 Ntb Phase in Mixtures 604

16.5 Heliconical Cholesteric Phase 606

16.6 Summary and Outlook 609

References 610

Index 623

loading