Chiral Lewis Acids in Organic Synthesis
Buy Rights Online Buy Rights

Rights Contact Login For More Details

  • Wiley

More About This Title Chiral Lewis Acids in Organic Synthesis

English

A complete overview covering the application of metal-based chiral Lewis acids from all parts of the periodic table, the Author emphasizes the most recent contributions to the field as well as prominent direction of development.
The book discusses the design of chiral complexes as well as a wide spectrum of reactions promoted by various chiral Lewis acids, including water-compatible acids as well as the most important applications in the chemical and pharmaceutical industries.
A must-have for catalytic and organic chemists working in the field, both in academia and industry, as well as pharmaceutical and medicinal chemists.

English

Jacek Mlynarski is a Professor of Organic Chemistry and Group Leader at the Jagiellonian University of Krakow (Poland). He also studied chemistry at the Jagiellonian University in Krakow and received his Ph.D. (2000) from the Institute of Organic Chemistry of the Polish Academy of Sciences. In 2001 he obtained a research fellowship from the Alexander von Humboldt Foundation and worked with Prof. Alois Fürstner at the Max Planck Institute for Coal Research (Germany). Upon returning to Poland in 2002, he first obtained an academic position at the Institute of Organic Chemistry at the Polish Academy of Sciences, before joining his current department in 2008. His scientific interest includes enantioselective synthetic methodology that relies on metal-based and metal-free chiral catalysts.

English

List of Contributors xi

Preface xiii

1 Alkaline-Earth Metal-Based Chiral Lewis Acids 1
Anna Domżalska, Artur Ulikowski and Bartłomiej Furman

1.1 Introduction 1

1.2 General Properties of Alkaline Earth Metal Compounds 1

1.3 Applications in Asymmetric Synthesis 2

1.3.1 Cycloaddition Reactions 2

1.3.2 Carbonyl and Imine Addition Reactions 8

1.3.3 Conjugate Addition Reactions 14

1.3.4 Other Reactions 21

References 23

2 Titanium-Based Chiral Lewis Acids 27
Jun Wang and Xiaoming Feng

2.1 Introduction 27

2.2 Asymmetric Addition of Carbon Nucleophiles to Carbonyl Compounds 27

2.3 Asymmetric Cyanide Addition Reaction 30

2.4 Asymmetric Epoxidation 31

2.5 Asymmetric Darzens Reaction 35

2.6 Asymmetric Ring-opening Reaction 36

2.7 Asymmetric Sulfoxidation Reaction 39

2.8 Asymmetric Hetero-Diels–Alder (HDA) Reaction 42

2.9 Asymmetric Fluorination of 1,3-Dicarbonyl Compounds 44

2.10 Asymmetric Sulfenylation of 1,3-Dicarbonyl Compounds 45

2.11 Asymmetric Formal Intramolecular C(sp2)–H Insertion of N-Aryl α-Diazoamides 46

2.12 Asymmetric Reduction of Ketones 46

2.13 Asymmetric Hydroalkoxylation of Nonactivated Alkenes 47

2.14 Asymmetric Titanium(III)-Catalyzed Reductive Coupling Reactions 47

2.15 Asymmetric 1,3-Dipolar Cycloaddition of Nitrone and Unsaturated Aldehyde 50

2.16 Asymmetric Friedel–Crafts Alkylation Reaction 51

2.17 Conclusions 52

Acknowledgments 53

References 53

3 Iron-based Chiral Lewis Acids 59
Thierry Ollevier

3.1 Introduction 59

3.2 Chiral Iron Porphyrins 59

3.3 Chiral Iron Bipyridines 62

3.4 Chiral Salen–Salan Lewis Acid Catalysts 66

3.4.1 Chiral Schiff-based and Salen Lewis Acids 66

3.4.2 Chiral Salan Lewis Acids 69

3.5 Bis(oxazoline) Lewis Acid Catalysts 72

3.6 Pyridine Bis(oxazoline) Lewis Acid Catalysts 75

3.7 Diamine-derived Lewis Acid Catalysts 80

3.8 Diphosphine-derived Lewis Acid Catalysts 84

3.9 Binaphthyl-derived Lewis Acid Catalysts 91

3.10 Other Iron Lewis Acids 93

3.11 Conclusions 95

Acknowledgments 95

References 96

4 Copper-based Chiral Lewis Acids 103
I. Karthikeyan and Mukund P. Sibi

4.1 Introduction 103

4.2 Conjugate Additions 104

4.2.1 Michael Addition 104

4.2.2 Mukaiyama–Michael Addition 107

4.3 Mannich-Type Reaction 107

4.4 Aldol-Type Reactions 109

4.4.1 Asymmetric Aldol Reaction 109

4.4.2 Nitro-aldol Reaction 109

4.4.3 Aza-Henry Reaction 109

4.4.4 Mukaiyama Aldol Reaction 112

4.5 Asymmetric Friedel–Crafts Alkylation 112

4.6 Cycloadditions 113

4.6.1 Diels–Alder Reaction 113

4.6.2 1,3-Dipolar Cycloaddition 116

4.6.3 [3+2]-Cycloaddition 117

4.6.4 [4+1] Cycloaddition 118

4.6.5 [6+3] Cycloaddition 118

4.7 Cyclization Reactions 119

4.7.1 Intramolecular Cyclization 119

4.7.2 Intermolecular Cyclization 120

4.7.3 Reductive Cyclization 121

4.7.4 Ring-Opening Cyclization 122

4.8 Kinetic Resolution 123

4.9 Desymmetrization 123

4.10 Trifluoromethylation 124

4.11 Halogenation 125

4.11.1 Enantioselective Chlorination 125

4.11.2 Asymmetric Chloro/Fluorination 125

4.12 Reductions 126

4.12.1 Hydrosilane Reduction 126

4.12.2 Hydrosilylation of Allene 126

4.12.3 Amination Reaction 126

4.13 Other Reactions 127

4.13.1 Aziridination 127

4.13.2 Annulation Reaction 128

4.13.3 Amino Lactonization 128

4.13.5 Allylic Oxidation 129

4.13.6 Carbenoid Insertion 130

4.13.7 Alkynylation 131

4.14 Conclusions 132

References 133

5 Zinc-based Chiral Lewis Acids 137
Sebastian Baś, Marcin Szewczyk and Jacek Mlynarski

5.1 Introduction 137

5.2 Zinc Abundance in Nature 137

5.3 Carbon–Carbon Bond Formation 138

5.3.1 Direct Aldol Reaction 138

5.3.2 Mannich Reaction 144

5.3.3 Michael Addition 147

5.3.4 Addition to Carbonyl Group 151

5.3.5 Cycloaddition 153

5.3.6 Friedel–Crafts Reaction 157

5.3.7 Other Reactions 162

5.4 Carbon–Hydrogen Bond Formation 162

5.4.1 Reduction of Ketones 162

5.4.2 Reduction of Imines 165

5.5 Carbon–Oxygen Bond Formation 169

5.6 Carbon–Phosphorus Bond Formation 171

5.6.1 Phospha-Michael Addition 172

5.6.2 Hydrophosphonylation 174

References 176

6 From Noble Metals to Fe-, Co-, and Ni-based Catalysts: The Asymmetric Reductions as a Case Study
Jadwiga Gajewy, Daniel Łowicki and Marcin Kwit

6.1 Introduction 183

6.2 Brief Historical Background – “From the Golden Age to the Iron Age” 184

6.3 Development of New Methods for Asymmetric Reduction 189

6.4 Some Mechanistic Considerations 190

6.5 Reduction of C═C Bond – Asymmetric Hydrogenation 196

6.5.1 Noble Metal Catalysts 196

6.5.2 Non-noble Metal Catalysts 199

6.6 Asymmetric Reductions of C═O bonds 201

6.6.1 Asymmetric Hydrogenation of Ketones 201

6.6.2 Asymmetric Transfer Hydrogenation of Ketones 206

6.6.3 Asymmetric Hydrosilylation of Ketones 208

6.7 Conclusions 212

References 214

7 Chiral Complexes with Carbophilic Lewis Acids Based on Copper, Silver, and Gold 223
Matej Žabka and Radovan Šebesta

7.1 Introduction 223

7.2 Enantioselective Copper Catalysis 223

7.2.1 Conjugate Additions 223

7.2.2 Allylic Substitutions 232

7.2.3 Other Reactions 238

7.3 Enantioselective Gold Catalysis 240

7.3.1 Chiral Gold Catalysts as σ‐Acids: Aldol, Mannich, and Related Reactions 241

7.3.2 Chiral Gold Catalysts as π‐Acids: Enyne Cycloisomerizations, Cycloadditions, and Rearrangements 243

7.3.3 Gold‐catalyzed Functionalizations of Alkynes and Allenes 246

7.4 Enantioselective Silver Catalysis 250

7.4.1 Nucleophilic Additions to Carbonyl Compounds and Imines 250

7.4.2 Reactions of Azomethine Ylides 253

7.5 Conclusions 254

References 255

8 Chiral Lanthanide Complexes in Organic Synthesis 261
Helen C. Aspinall

8.1 Introduction 261

8.1.1 The Rare Earth Elements 261

8.1.2 Key Aspects of the Chemistry of the Rare Earth Elements 262

8.1.3 Variation of Ionic Radius and Lewis Acidity 262

8.2 Monofunctional Lewis Acid Catalysis 263

8.2.1 Rare Earth Triflates 263

8.2.2 Rare Earth Phosphonates 280

8.2.3 Bifunctional Catalysts: Monometallic and Homometallic 281

8.2.4 Rare Earth Alkoxides 282

8.2.5 Rare Earth Dialkylamides 284

8.2.6 Rare Earth Chlorides for Enantioselective Cyanation Catalysis 288

8.3 Heterobimetallic Catalysts 290

8.3.1 Alkali Metal Rare Earth Binaphtholates M3[Ln(binol)3] 290

8.3.2 Transition Metal–Lanthanide Schiff Base Catalysts 294

8.4 Conclusions 295

References 296

9 Water-compatible Chiral Lewis Acids 299
Taku Kitanosono and Shu Kobayashi

9.1 Discovery of Water-compatible Lewis Acids 299

9.2 Definition and Fundamentals of Water-compatible Lewis Acids 299

9.3 Chiral Induction by Lewis Acid in Aqueous Environments 303

9.4 1,2-Addition to C═O Double Bond 303

9.4.1 Mukaiyama Aldol Reactions 303

9.4.2 Direct-type Aldol Reactions 313

9.4.3 Allylation Reactions 317

9.4.4 Reduction 319

9.5 1,2-Addition to C═N Bond 320

9.5.1 Mannich-type Reactions 320

9.5.2 Alkyne Addition Reactions 321

9.5.3 Allylation Reactions 322

9.6 Cycloadditions 323

9.6.1 Diels–Alder Reactions 323

9.6.2 Kinugasa Reaction 325

9.7 Addition to Epoxides 326

9.7.1 Addition of N,O,S-Nucleophiles 326

9.7.2 Addition of C-nucleophiles 327

9.8 Conjugate Additions 328

9.8.1 Thia-Michael Additions 328

9.8.2 Epoxidations 328

9.8.3 1,4-Addition of C-nucleophiles 329

9.8.4 Boron Conjugate Additions 332

9.8.5 Silyl Conjugate Additions 333

9.8.6 Protonations 334

9.9 Conclusions 335

References 335

10 Cooperative Lewis Acids and Aminocatalysis 345
Samson Afewerki and Armando Córdova

10.1 Introduction 345

10.1.1 Combined Enamine and Metal Activations 346

10.1.2 Combined Iminium and Lewis Acid Catalysts 366

10.2 Conclusions 368

References 370

Index 375

loading