Advanced Molecularly Imprinting Materials
Buy Rights Online Buy Rights

Rights Contact Login For More Details

  • Wiley

More About This Title Advanced Molecularly Imprinting Materials

English

Molecularly imprinted polymers (MIPs) are an important functional material because of their potential implications in diverse research fields. The materials have been developed for a range of uses including separation, environmental, biomedical and sensor applications. In this book, the chapters are clustered into two main sections: Strategies to be employed when using the affinity materials, and rational design of MIPs for advanced applications. In the first part, the book covers the recent advances in producing MIPs for sample design, preparation and characterizations. In the second part, the chapters demonstrate the importance and novelty of creation of recognition imprinted on the materials and surfaces for a range of microbial detection sensors in the biomedical, environmental and food safety fields as well as sensing human odor and virus monitoring systems.         

Part 1: Strategies of affinity materials

  • Molecularly imprinted polymers
  • MIP nanomaterials
  • Micro- and nanotraps for solid phase extraction
  • Carbonaceous affinity nanomaterials
  • Fluorescent MIPs
  • MIP-based fiber optic sensors

Part 2: Rational design of MIP for advanced applications

  • MIP-based biomedical and environmental sensors
  • Affinity adsorbents for environmental biotechnology
  • MIP in food safety
  • MIP-based virus monitoring
  • MIP-based drug delivery and controlled release
  • Biorecognition imprints on the biosensor surfaces
  • MIP-based sensing of volatile organic compounds in human body odour
  • MIP-based microcantilever sensor system

English

Ashutosh Tiwari is Secretary General, International Association of Advanced Materials; Chairman and Managing Director of Tekidag AB (Innotech); Associate Professor and Group Leader, Smart Materials and Biodevices at the world premier Biosensors and Bioelectronics Centre, IFM-Linköping University; Editor-in-Chief, Advanced Materials Letters; a materials chemist and docent in the Applied Physics with the specialization of Biosensors and Bioelectronics from Linköping University, Sweden. He has more than 100 peer-reviewed primary research publications in the field of materials science and nanotechnology and has edited/authored more than 35 books on advanced materials and technology.

Lokman Uzun is an Associate Professor at Hacettepe University, Department of Chemistry,  Ankara,Turkey and Associate Editor of Advanced Materials Letters. He has received his PhD in 2008 from Institute of Science in (Bio)Chemistry, Hacettepe University and has published 105 papers in SCI journals. His research interests are mainly materials science, surface modification, affinity interaction, polymer science, especially molecularly imprinted polymers and their applications in biosensors, bioseparation, food safety, and environmental sciences. He has produced novel polymers to detect, separate and purify important biological molecules, remove or deplete toxic molecules such as heavy metal ions, bilirubin, antibiotics, organic pollutants, and undesired proteins from serum and aqueous solutions.

English

Preface xiii

Part 1 Strategies of Affinity Materials

1 Recent Molecularly Imprinted Polymer-based Methods for Sample Preparation 3
Antonio Martín-Esteban

1.1 Introduction 3

1.2 Molecularly Imprinted Solid-phase Extraction 6

1.3 Molecularly Imprinted Solid-phase Microextraction 14

1.4 Molecularly Imprinted Stir Bar Sorptive Extraction 17

1.5 Other Formats 18

1.6 Conclusions 20

References 21

2 A Genuine Combination of Solvent-free Sample Preparation Technique and Molecularly Imprinted Nanomaterials 29
Santanu Patra, Ekta Roy, Rashmi Madhuri and Prashant K. Sharma

2.1 Introduction 30

2.2 Molecularly Imprinted Polymer Modified Fiber for Solid-phase Microextraction 40

2.3 In-tube Solid-phase Microextraction Technique 55

2.4 Monolithic Fiber 58

2.5 Micro-solid-phase Extraction 70

2.6 Stir-bar Sorptive Extraction 73

2.7 Conclusion and Future Scope 76

Acknowledgments 76

Abbreviations 77

References 78

3 Fluorescent Molecularly Imprinted Polymers 89
Kornelia Gawlitza, Wei Wan, Sabine Wagner and Knut Rurack

3.1 Introduction 89

3.2 Classes of Emitters to Endow MIPs with Fluorescence 91

3.3 Fluorescent Molecularly Imprinted Silica 108

3.4 Post-imprinting of MIPs 111

3.5 fMIPs as Labels 113

3.6 Formats for fMIPs 115

3.7 Conclusion 119

References 120

4 Molecularly Imprinted Polymer-based Micro- and Nanotraps for Solid-phase Extraction 129
Rıdvan Say, Rüstem Keçili and Arzu Ersöz

4.1 Introduction 130

4.2 MIPs as SPE Materials 130

4.3 Conclusions 149

References 153

5 Imprinted Carbonaceous Nanomaterials: A Tiny Looking Big Thing in the Field of Selective and Secific Analysis 165
Ekta Roy, Santanu Patra, Rashmi Madhuri and Prashant K. Sharma

5.1 Introduction 166

5.2 Graphene-modified Imprinted Polymer 179

5.3 Carbon Nanotubes-modified Imprinted Polymer 190

5.4 Combination of graphene, CNTs, and MIPs 197

5.5 Graphene Quantum Dots and/or Carbon Dots 198

5.6 Fullerene 201

5.7 Activated carbon 202

5.8 Conclusions 203

Acknowledgments 204

List of abbreviations 204

References 205

6 Molecularly Imprinted Materials for Fiber-optic Sensor Platforms 217
Yavuz Orhan Yaman, Necdet Başaran, Kübra Karayagiz, Zafer Vatansever, Cengiz Yegin, Önder Haluk Tekbaş and Müfrettin Murat Sari

6.1 Introduction 218

6.2 Material Aspect: Morphology and Physical Forms of MIPs in FO Sensors 223

6.3 Molecularly Imprinting Technology for Fiber-optic Sensors 231

6.4 State-of-the-art Fiber-optic Sensors Applications Using Molecularly Imprinted Materials 268

6.5 Conclusion 273

References 274

Part 2 Rational Design of MIP for Advanced Applications

7 Molecularly Imprinted Polymer-based Sensors for Biomedical and Environmental Applications 285
Anca Florea, Oana Hosu, Bianca Ciui and Cecilia Cristea

7.1 Introduction 285

7.2 Molecularly Imprinted Polymers for Analytes of Biomedical Interest 296

7.3 Molecularly Imprinted Polymers for Analytes of Environmental Interest 306

7.4 Conclusion 314

Acknowledgments 316

References 316

8 Molecularly Imprinted Polymers: The Affinity Adsorbents for Environmental Biotechnology 327
Bo Mattiasson and Gizem Ertürk

8.1 Introduction 327

8.2 Molecularly Imprinted Polymers 329

8.3 Monomers 329

8.4 Cross-linking Agents 331

8.5 Mode of Polymerization 332

8.6 Cryogels 334

8.7 Process Technology 336

8.8 Applications 338

References 345

9 Molecular Imprinting Technology for Sensing and Separation in Food Safety 353
Baran Önal Ulusoy, Mehmet Odabaşi and Neşe Hayat Aksoy

9.1 Food Safety 354

9.2 Food Analysis 355

9.3 Current Separation Methods Used for Food Safety Purposes 356

9.4 What Is MIP? 357

9.5 MIP Applications Used for Food Safety Purposes 359

References 377

10 Advanced Imprinted Materials for Virus Monitoring 389
Zeynep Altintas

10.1 Introduction 390

10.2 Virus Imprinting 393

10.3 Artificial MIP Receptors for Viruses 398

10.4 Virus Monitoring and Detection Using Biomimetic Sensors 399

10.5 Virus Imprinting for Separation Technologies 401

10.6 Conclusions 405

References 406

11 Design and Evaluation of Molecularly Imprinted Polymers as Drug Delivery Systems 413
André Luís Morais Ruela and Gislaine Ribeiro Pereira

11.1 Introduction 414

11.2 Synthesis and Characterization of MIPs Intended for Drug Release Using Non-covalent Approaches 418

11.3 Design and Evaluation of Drug Delivery Systems Based on MIPs 436

11.4 Conclusions 445

References 446

12 Molecularly Imprinted Materials for Controlled Release Systems 455
Yagmur Yegin, Gökhan Yilmaz, Ömer Karakoç, Cengiz Yegin, Servet Çete, Mustafa Akbulut and Müfrettin Murat Sari

12.1 Introduction 456

12.2 Selectivity, Release Mechanism and Functionality of MIPs-based CR Systems 459

12.3 Molecularly Imprinted Polymers Production for Controlled Release 482

12.4 Controlled Release Applications Using Molecularly Imprinted Materials-based Controlled Release 491

12.5 Conclusion 506

References 507

13 Molecular Imprinting: The Creation of Biorecognition Imprints on the Biosensor Surfaces 523
Gizem Ertürk and Bo Mattiasson

13.1 Introduction 523

13.2 Molecular Imprinting 524

13.3 Microcontact Imprinting 525

13.4 Capacitive Biosensors 529

13.5 Surface Plasmon Resonance Biosensors 541

13.6 Concluding Remarks 549

References 550

14 Molecular Imprinted Polymers for Sensing of Volatile Organic Compounds in Human Body Odor 561
Sunil Kr. Jha

14.1 Introduction 562

14.2 MIP-QCM Sensor Array Preparation 573

14.3 Chemical Vapor Sensing 576

14.4 Analysis Outcomes 603

14.5 Conclusion 624

Acknowledgments 624

References 624

15 Development of Molecularly Imprinted Polymer-based Microcantilever Sensor System 637
Meltem Okan and Memed Duman

15.1 Introduction to Mass Sensors 637

15.2 Principles of Mass Sensors 640

15.4 Molecularly Imprinted Polymer Technology 655

15.5 Molecularly Imprinted Polymer-based QCM Sensors 658

15.6 Ongoing Studies on Molecularly Imprinted Polymers-based Microcantilevers 661

Acknowledgments 669

References 669

loading