Rights Contact Login For More Details
- Wiley
More About This Title Microwave Circuit Design Using Linear and Nonlinear Techniques, Second Edition
- English
English
- English
English
ANTHONY M. PAVIO, PHD, is the Manager of the Phoenix Design Center for Rockwell Collins, which is focused on the development of advanced high-density military products. He was previously the manager of Integrated RF Ceramics Center for Motorola Labs, specializing in the development of highly integrated LTCC modules. Dr. Pavio was also a technical director of the microwave products division of Texas Instruments.
ULRICH L. ROHDE, PHD, Dr.-ING, is Chairman of Synergy Microwave Corporation; a partner of Rohde & Schwarz, a firm specializing in test equipment and advanced communications systems; and Professor of Microwave and RF Technology at the Technische Universität Cottbus, Germany.
- English
English
FOREWORD xv
ROBERT A. PUCEL
PREFACE xix
1 RF MICROWAVE SYSTEMS 1
1.1 Introduction 1
1.2 Maxwell’s Equations 10
1.3 RF Wireless Microwave Millimeter-Wave Applications 12
1.4 Frequency Bands, Modes, and Waveforms of Operation 17
1.5 Analog and Digital Requirements 18
1.6 Elementary Definitions 20
1.7 Basic RF Transmitters and Receivers 26
1.8 Modern CAD for Nonlinear Circuit Analysis 29
1.9 Dynamic Load Line 30
References 31
Bibliography 32
Problems 33
2 LUMPED AND DISTRIBUTED ELEMENTS 35
2.1 Introduction 35
2.2 Transition from RF to Microwave Circuits 35
2.3 Parasitic Effects on Lumped Elements 38
2.4 Distributed Elements 45
2.5 Hybrid Element: Helical Coil 46
References 47
Bibliography 49
Problems 50
3 ACTIVE DEVICES 51
3.1 Introduction 51
3.2 Diodes 53
3.3 Microwave Transistors 103
3.4 Heterojunction Bipolar Transistor 144
3.5 Microwave FET 150
References 183
Bibliography 187
Problems 190
4 TWO-PORT NETWORKS 192
4.1 Introduction 192
4.2 Two-Port Parameters 193
4.3 S Parameters 197
4.4 S Parameters from SPICE Analysis 198
4.5 Stability 199
4.6 Power Gains, Voltage Gain, and Current Gain 202
4.7 Three-Ports 210
4.8 Derivation of Transducer Power Gain 213
4.9 Differential S Parameters 215
4.10 Twisted-Wire Pair Lines 218
4.11 Low-Noise and High-Power Amplifier Design 221
4.12 Low-Noise Amplifier Design Examples 224
References 233
Bibliography 234
Problems 234
5 IMPEDANCE MATCHING 241
5.1 Introduction 241
5.2 Smith Charts and Matching 241
5.3 Impedance Matching Networks 249
5.4 Single-Element Matching 250
5.5 Two-Element Matching 251
5.6 Matching Networks Using Lumped Elements 252
5.7 Matching Networks Using Distributed Elements 253
5.8 Bandwidth Constraints for Matching Networks 257
References 267
Bibliography 268
Problems 268
6 MICROWAVE FILTERS 273
6.1 Introduction 273
6.2 Low-Pass Prototype Filter Design 274
6.3 Transformations 279
6.4 Transmission Line Filters 291
6.5 Exact Designs and CAD Tools 305
6.6 Real-Life Filters 305
References 309
Bibliography 309
Problems 310
7 NOISE IN LINEAR TWO-PORTS 311
7.1 Introduction 311
7.2 Signal-to-Noise Ratio 313
7.3 Noise Figure Measurements 315
7.4 Noise Parameters and Noise Correlation Matrix 317
7.5 Noisy Two-Port Description 326
7.6 Noise Figure of Cascaded Networks 332
7.7 Influence of External Parasitic Elements 334
7.8 Noise Circles 338
7.9 Noise Correlation in Linear Two-Ports Using Correlation Matrices 340
7.10 Noise Figure Test Equipment 343
7.11 How to Determine Noise Parameters 345
7.12 Calculation of Noise Properties of Bipolar and FETs 346
7.13 Bipolar Transistor Noise Model in T Configuration 359
7.14 The GaAs FET Noise Model 367
References 381
Bibliography 383
Problems 385
8 SMALL- AND LARGE-SIGNAL AMPLIFIER DESIGN 388
8.1 Introduction 388
8.2 Single-Stage Amplifier Design 390
8.3 Frequency Multipliers 416
8.4 Design Example of 1.9-GHz PCS and 2.1-GHz W-CDMA Amplifiers 420
8.5 Stability Analysis and Limitations 422
References 426
Bibliography 429
Problems 431
9 POWER AMPLIFIER DESIGN 433
9.1 Introduction 433
9.2 Device Modeling and Characterization 434
9.3 Optimum Loading 464
9.4 Single-Stage Power Amplifier Design 466
9.5 Multistage Design 472
9.6 Power-Distributed Amplifiers 480
9.7 Class of Operation 500
9.8 Power Amplifier Stability 509
9.9 Amplifier Linearization Methods 512
References 514
Bibliography 518
Problems 519
10 OSCILLATOR DESIGN 520
10.1 Introduction 520
10.2 Compressed Smith Chart 525
10.3 Series or Parallel Resonance 526
10.4 Resonators 528
10.5 Two-Port Oscillator Design 544
10.6 Negative Resistance from Transistor Model 550
10.7 Oscillator Q and Output Power 559
10.8 Noise in Oscillators: Linear Approach 563
10.9 Analytic Approach to Optimum Oscillator Design Using S Parameters 591
10.10 Nonlinear Active Models for Oscillators 605
10.11 Oscillator Design Using Nonlinear Cad Tools 617
10.12 Microwave Oscillators Performance 631
10.13 Design of an Oscillator Using Large-Signal Y Parameters 634
10.14 Example for Large-Signal Design Based on Bessel Functions 637
10.15 Design Example for Best Phase Noise and Good Output Power 641
10.16 CAD Solution for Calculating Phase Noise in Oscillators 650
10.17 Validation Circuits 666
10.18 Analytical Approach for Designing Efficient Microwave FET and Bipolar Oscillators (Optimum Power) 674
References 703
Bibliography 707
Problems 718
11 MICROWAVE MIXER DESIGN 724
11.1 Introduction 724
11.2 Diode Mixer Theory 728
11.3 Single-Diode Mixers 743
11.4 Single-Balanced Mixers 753
11.5 Double-Balanced Mixers 769
11.6 FET Mixer Theory 794
11.7 Balanced FET Mixers 818
11.8 Special Mixer Circuits 832
11.9 Using Modern CAD Tools 843
11.10 Mixer Noise 850
References 863
Bibliography 866
Problems 867
12 RF SWITCHES AND ATTENUATORS 869
12.1 pin Diodes 869
12.2 pin Diode Switches 872
12.3 pin Diode Attenuators 881
12.4 FET Switches 886
References 889
Bibliography 890
13 MICROWAVE COMPUTER-AIDED WORKSTATIONS FOR MMIC REQUIREMENTS 891
13.1 Introduction 891
13.2 Gallium Arsenide MMIC Foundries: Role of CAD 897
13.3 Yield-Driven Design 901
13.4 Designing Nonlinear Circuits Using the Harmonic Balance Method 905
13.5 Programmable Microwave Tuning System 914
13.6 Introduction to MMIC Considering Layout Effects 920
13.7 GaAs MMIC Layout Software 927
13.8 Practical Design Example 930
13.9 CAD Applications 935
Bibliography 956
Appendix A BIP: GUMMEL–POON BIPOLAR TRANSISTOR MODEL 959
Appendix B LEVEL 3 MOSFET 966
Appendix C NOISE PARAMETERS OF GaAs MESFETs 969
Appendix D DERIVATIONS FOR UNILATERAL GAIN SECTION 982
Appendix E VECTOR REPRESENTATION OF TWO-TONE
INTERMODULATION PRODUCTS 985
Appendix F PASSIVE MICROWAVE ELEMENTS 1005
INDEX 1027
- English