Pattern Recognition Statistical Structural And Neural
×
Success!
×
Error!
×
Information !
Rights Contact Login For More Details
- Wiley
More About This Title Pattern Recognition Statistical Structural And Neural
- English
English
Explores the heart of pattern recognition concepts, methods and applications using statistical, syntactic and neural approaches. Divided into four sections, it clearly demonstrates the similarities and differences among the three approaches. The second part deals with the statistical pattern recognition approach, starting with a simple example and finishing with unsupervised learning through clustering. Section three discusses the syntactic approach and explores such topics as the capabilities of string grammars and parsing; higher dimensional representations and graphical approaches. Part four presents an excellent overview of the emerging neural approach including an examination of pattern associations and feedforward nets. Along with examples, each chapter provides the reader with pertinent literature for a more in-depth study of specific topics.
- English
English
Robert J. Schalkoff is the author of Pattern Recognition: Statistical, Structural and Neural Approaches, published by Wiley.
- English
English
STATISTICAL PATTERN RECOGNITION (StatPR).
Supervised Learning (Training) Using Parametric and NonparametricApproaches.
Linear Discriminant Functions and the Discrete and Binary FeatureCases.
Unsupervised Learning and Clustering.
SYNTACTIC PATTERN RECOGNITION (SyntPR).
Overview.
Syntactic Recognition via Parsing and Other Grammars.
Graphical Approaches to SyntPR.
Learning via Grammatical Inference.
NEURAL PATTERN RECOGNITION (NeurPR).
Introduction to Neural Networks.
Introduction to Neural Pattern Associators and MatrixApproaches.
Feedforward Networks and Training by Backpropagation.
Content Addressable Memory Approaches and Unsupervised Learning inNeurPR.
Appendices.
References.
Permission Source Notes.
Index.
Supervised Learning (Training) Using Parametric and NonparametricApproaches.
Linear Discriminant Functions and the Discrete and Binary FeatureCases.
Unsupervised Learning and Clustering.
SYNTACTIC PATTERN RECOGNITION (SyntPR).
Overview.
Syntactic Recognition via Parsing and Other Grammars.
Graphical Approaches to SyntPR.
Learning via Grammatical Inference.
NEURAL PATTERN RECOGNITION (NeurPR).
Introduction to Neural Networks.
Introduction to Neural Pattern Associators and MatrixApproaches.
Feedforward Networks and Training by Backpropagation.
Content Addressable Memory Approaches and Unsupervised Learning inNeurPR.
Appendices.
References.
Permission Source Notes.
Index.