Rights Contact Login For More Details
- Wiley
More About This Title Concepts and Applications of Finite ElementAnalysis, Fourth Edition
- English
English
- English
English
David S. Malkus received his Ph.D. from Boston University in 1976. He spent two years at the National Bureau of Standards and seven years in the Mathematics Department of Illinois Institute of Technology. He is now Professor of Engineering Mechanics at the Univrersity of Wisconsin-Madison. His research interests concern application of the finite element method to problems of structural and continuum mechanics, in particular the flow of non-Newtonian fluids. He is a member of the Rheology Research Center (University of Wisconsin-Madison) and the Society of Rheology.
Michael E. Plesha received his B.S. from the University of Illinois at Chicago, and his M.S. and Ph.D. degrees from Northwestern University, the Ph.D. degree in 1983. He has been a faculty member in the Department of Engineering Physics at the University of Wisconsin-Madison since 1983 where he is Professor of Engineering Mechanics. His research areas include constitutive modeling and finite element analysis of contact-friction problems, transient finite element analysis, and discrete element methods.
Robert J. Witt received his Ph.D. in Nuclear Engineering from the Massachusetts Institute of Technology in 1987. He is now an associate professor in the Department of Engineering Physics at the University of Wisconsin-Madison. His research interests are in computational methods of fluid and solid mechanics, with particular application to nuclear systems.
- English
English
Introduction.
One-Dimensional Elements, Computational Procedures.
Basic Elements.
Formulation Techniques: Variational Methods.
Formulation Techniques: Galerkin and Other Weighted Residual Methods.
Isoparametric Elements.
Isoparametric Triangles and Tetrahedra.
Coordinate Transformation and Selected Analysis Options.
Error, Error Estimation, and Convergence.
Modeling Considerations and Software Use.
Finite Elements in Structural Dynamics and Vibrations.
Heat Transfer and Selected Fluid Problems.
Constaints: Penalty Forms, Locking, and Constraint Counting.
Solid of Revolution.
Plate Bending.
Shells.
Nonlinearity: An Introduction.
Stress Stiffness and Buckling.
Appendix A: Matrices: Selected Definition and Manipulations.
Appendix B: Simultaneous Algebraic Equations.
Appendix C: Eigenvalues and Eigenvectors.
References.
Index.